Color vision requires the activity of cone photoreceptors to be compared in post-receptoral circuitry. Decades of psychophysical measurements have quantified the nature of these comparative interactions on a coarse scale. How such findings generalize to a cellular scale remains unclear. To answer that question, we quantified the influence of surrounding light on the appearance of spots targeted to individual cones. The eye’s aberrations were corrected with adaptive optics and retinal position was precisely tracked in real-time to compensate for natural movement. Subjects reported the color appearance of each spot. A majority of L-and M-cones consistently gave rise to the sensation of white, while a smaller group repeatedly elicited hue sensations. When blue sensations were reported they were more likely mediated by M- than L-cones. Blue sensations were elicited from M-cones against a short-wavelength light that preferentially elevated the quantal catch in surrounding S-cones, while stimulation of the same cones against a white background elicited green sensations. In one of two subjects, proximity to S-cones increased the probability of blue reports when M-cones were probed. We propose that M-cone increments excited both green and blue opponent pathways, but the relative activity of neighboring cones favored one pathway over the other.
展开▼