首页> 美国卫生研究院文献>Scientific Reports >A Chelation Strategy for In-situ Constructing Surface Oxygen Vacancy on {001} Facets Exposed BiOBr Nanosheets
【2h】

A Chelation Strategy for In-situ Constructing Surface Oxygen Vacancy on {001} Facets Exposed BiOBr Nanosheets

机译:在{001}刻面上暴露的BiOBr纳米片上原位构建表面氧空位的螯合策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Surface defect of nanomaterials is an important physical parameter which significantly influences their physical and chemical performances. In this work, high concentration of surface oxygen vancancies (SOVs) are successfully introduced on {001} facets exposed BiOBr nanosheets via a simple surface modification using polybasic carboxylic acids. The chelation interaction between carboxylic acid anions and Bi3+ results in the weakness of Bi-O bond of BiOBr. Afterwards, under visible-light irradiation, the oxygen atoms would absorb the photo-energy and then be released from the surface of BiOBr, leaving SOVs. The electron spin resonance (ESR), high-resolution transmission electron microscopy (HRTEM), and UV–vis diffuse reflectance spectra (DRS) measurements confirm the existence of SOVs. The SOVs can enhance the absorption in visible light region and improve the separation efficiency of photo-generated charges. Hence, the transformation rate of adsorbed O2 on the as-prepared BiOBr with SOVs to superoxide anion radicals (•O2) and the photocatalytic activity are greatly enhanced. Based on the modification by several carboxylic acids and the photocatalytic results, we propose that carboxylic acids with natural bond orbital (NBO) electrostatic charges absolute values greater than 0.830 are effective in modifying BiOBr.
机译:纳米材料的表面缺陷是重要的物理参数,会极大地影响其物理和化学性能。在这项工作中,通过使用多元羧酸的简单表面改性,成功地在暴露于{001}面的BiOBr纳米片上引入了高浓度的表面氧价(SOV)。羧酸根阴离子与Bi 3 + 之间的螯合相互作用导致BiOBr的Bi-O键弱化。然后,在可见光照射下,氧原子将吸收光能,然后从BiOBr的表面释放出来,留下SOV。电子自旋共振(ESR),高分辨率透射电子显微镜(HRTEM)和紫外可见漫反射光谱(DRS)测量证实了SOV的存在。 SOV可以增强可见光区域的吸收并提高光生电荷的分离效率。因此,SOV制备的BiOBr上吸附的O2转化为超氧阴离子自由基(•O2 -)的转化率和光催化活性大大提高。基于几种羧酸的修饰作用和光催化结果,我们认为具有自然键轨道(NBO)静电荷绝对值大于0.830的羧酸可有效修饰BiOBr。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号