首页> 美国卫生研究院文献>Scientific Reports >Cut Based Method for Comparing Complex Networks
【2h】

Cut Based Method for Comparing Complex Networks

机译:基于割的复杂网络比较方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Revealing the underlying similarity of various complex networks has become both a popular and interdisciplinary topic, with a plethora of relevant application domains. The essence of the similarity here is that network features of the same network type are highly similar, while the features of different kinds of networks present low similarity. In this paper, we introduce and explore a new method for comparing various complex networks based on the cut distance. We show correspondence between the cut distance and the similarity of two networks. This correspondence allows us to consider a broad range of complex networks and explicitly compare various networks with high accuracy. Various machine learning technologies such as genetic algorithms, nearest neighbor classification, and model selection are employed during the comparison process. Our cut method is shown to be suited for comparisons of undirected networks and directed networks, as well as weighted networks. In the model selection process, the results demonstrate that our approach outperforms other state-of-the-art methods with respect to accuracy.
机译:揭示各种复杂网络的内在相似性已经成为一个流行且跨学科的话题,具有大量相关的应用领域。这里相似性的实质是相同网络类型的网络特征高度相似,而不同种类的网络的特征相似性低。在本文中,我们介绍并探索了一种基于割距比较各种复杂网络的新方法。我们显示了割距和两个网络的相似度之间的对应关系。这种对应关系使我们可以考虑范围广泛的复杂网络,并显式比较各种网络的准确性。比较过程中采用了各种机器学习技术,例如遗传算法,最近邻分类和模型选择。我们的剪切方法显示适用于比较无向网络,有向网络以及加权网络。在模型选择过程中,结果表明,在准确性方面,我们的方法优于其他最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号