首页> 美国卫生研究院文献>Nature Communications >An orbitally derived single-atom magnetic memory
【2h】

An orbitally derived single-atom magnetic memory

机译:轨道衍生的单原子磁存储器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A magnetic atom epitomizes the scaling limit for magnetic information storage. Individual atomic spins have recently exhibited magnetic remanence, a requirement for magnetic memory. However, such memory has been only realized on thin insulating surfaces, removing potential tunability via electronic gating or exchange-driven magnetic coupling. Here, we show a previously unobserved mechanism for single-atom magnetic storage based on bistability in the orbital population, or so-called valency, of an individual Co atom on semiconducting black phosphorus (BP). Ab initio calculations reveal that distance-dependent screening from the BP surface stabilizes the two distinct valencies, each with a unique orbital population, total magnetic moment, and spatial charge density. Excellent correspondence between the measured and predicted charge densities reveal that such orbital configurations can be accessed and manipulated without a spin-sensitive readout mechanism. This orbital memory derives stability from the energetic barrier to atomic relaxation, demonstrating the potential for high-temperature single-atom information storage.
机译:磁性原子代表了磁性信息存储的缩放限制。各个原子自旋最近展现出剩磁,这是磁记忆的必要条件。然而,这种存储器仅在薄的绝缘表面上实现,从而通过电子门控或交换驱动的磁耦合消除了潜在的可调性。在这里,我们展示了一种基于半导体黑磷(BP)上单个Co原子的轨道总体上的双稳态或所谓的化合价的单原子磁存储的先前未曾观察到的机制。从头算计算表明,从BP表面进行依赖于距离的筛选稳定了两个不同的化合价,每个化合价具有唯一的轨道数,总磁矩和空间电荷密度。测量和预测的电荷密度之间的极佳对应关系表明,无需自旋敏感的读出机制,就可以访问和操纵这种轨道构型。该轨道记忆从高能垒到原子弛豫都具有稳定性,证明了高温单原子信息存储的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号