首页> 美国卫生研究院文献>Scientific Reports >PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics
【2h】

PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics

机译:PEDOT:基于PSS的生物电子多层细菌复合膜

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microbial electrochemical systems provide an environmentally-friendly means of energy conversion between chemical and electrical forms, with applications in wastewater treatment, bioelectronics, and biosensing. However, a major challenge to further development, miniaturization, and deployment of bioelectronics and biosensors is the limited thickness of biofilms, necessitating large anodes to achieve sufficient signal-to-noise ratios. Here we demonstrate a method for embedding an electroactive bacterium, Shewanella oneidensis MR-1, inside a conductive three-dimensional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) matrix electropolymerized on a carbon felt substrate, which we call a multilayer conductive bacterial-composite film (MCBF). By mixing the bacteria with the PEDOT:PSS precursor in a flow-through method, we maintain over 90% viability of S. oneidensis during encapsulation. Microscopic analysis of the MCBFs reveal a tightly interleaved structure of bacteria and conductive PEDOT:PSS up to 80 µm thick. Electrochemical experiments indicate S. oneidensis in MCBFs can perform both direct and riboflavin-mediated electron transfer to PEDOT:PSS. When used in bioelectrochemical reactors, the MCBFs produce 20 times more steady-state current than native biofilms grown on unmodified carbon felt. This versatile approach to control the thickness of bacterial composite films and increase their current output has immediate applications in microbial electrochemical systems, including field-deployable environmental sensing and direct integration of microorganisms into miniaturized organic electronics.
机译:微生物电化学系统提供了一种环境友好的化学和电子形式之间的能量转换方式,并应用于废水处理,生物电子学和生物传感领域。然而,生物电子学和生物传感器的进一步开发,小型化和部署的主要挑战是生物膜的厚度有限,这就需要大型阳极来实现足够的信噪比。在这里,我们展示了一种将电活性细菌Shewanella oneidensis MR-1嵌入在碳毡基材上电聚合的导电三维聚(3,4-乙撑二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)基质中的方法,该方法我们称多层导电细菌复合膜(MCBF)。通过流通法将细菌与PEDOT:PSS前体混合,在封装过程中,我们可保持拟南芥活力超过90%。对MCBF的显微镜分析显示,细菌和导电的PEDOT:PSS的紧密交错结构高达80μm厚。电化学实验表明,MCBF中的沙门氏菌可以进行直接和核黄素介导的电子转移到PEDOT:PSS。当在生物电化学反应器中使用时,MCBF产生的稳态电流比在未改性碳毡上生长的天然生物膜高20倍。这种控制细菌复合膜厚度并增加其电流输出的通用方法已在微生物电化学系统中得到了立即应用,包括可现场部署的环境传感以及将微生物直接整合到小型化的有机电子产品中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号