首页> 外文会议>Conference on Electroactive Polymer Actuators and Devices >Memory effect and dynamics in PEDOT:PSS-based actuators under DC voltage
【24h】

Memory effect and dynamics in PEDOT:PSS-based actuators under DC voltage

机译:PEDOT中的记忆效应和动力学:直流电压下的PSS基执行器

获取原文

摘要

Conducting polymers have interested many research groups as they exhibit a large strain in response to electrical stimulation, which is promising for materials used in MEMS. To date, these micro-actuators have very often been characterized by applying an AC voltage to extract the produced strains and forces. However, many applications require subjecting the actuators to an electrical voltage threshold for about 10 seconds or until several minutes. A micro-camera tracking the displacements of an object, the actuation of a cochlear implant during surgery, or the closing of micro-tweezers for manipulation objects are potential applications for which actuation is achieved by applying a DC voltage. In this way, the kinetics to reach the maximum strain are identified and compared. The application of a DC voltage to the conducting polymer-based micro-actuator for an extended period of time results in the emergence of a "memory effect". In particular, the actuator does not return to its initial position promptly after a short-circuit. In addition, the electromechanical measurements conducted show that the deformation obtained depends on the DC voltage used for the previous actuation. The memory effect is directly related to the intrinsic operation of micro-actuator trilayers where the separator (NBR/PEO) is filled with an ionic liquid electrolyte that is involved during oxidation and reduction of the conductive polymer electrodes (PEDOT:PSS/PEO). An explanation of the physico-chemical phenomena involved will be proposed. These results are needful for the modeling and future control of these conjugated polymer micro-actuators integrated into microsystems devices for real-life applications.
机译:导电聚合物对许多研究组感兴趣,因为它们表现出响应电刺激的大应变,这对MEMS中使用的材料有望。迄今为止,这些微致动器通常通过应用AC电压来提取产生的菌株和力来表征。然而,许多应用需要使致动器进行电压阈值约10秒或直到几分钟。一种微型摄像机跟踪物体的位移,手术期间的耳蜗植入物的致动,或用于操纵对象的微镊子的闭合是通过施加DC电压来实现致动的潜在应用。以这种方式,识别并比较了达到最大应变的动力学。将DC电压施加到导电聚合物基微致动器的延长一段时间导致出现“记忆效应”。特别地,执行器在短路之后不会迅速返回其初始位置。另外,进行的机电测量表明,所获得的变形取决于用于先前致动的DC电压。记忆效应与微致致动器三层器的固有操作直接相关,其中分离器(NBR / PEO)填充有在氧化过程中涉及的离子液体电解质,导电聚合物电极(PEDOT:PSS / PEO)。将提出对涉及的物理化学现象的解释。这些结果需要对这些共轭聚合物微致动器的建模和未来控制集成到用于现实寿命应用的微系统装置中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号