首页> 美国卫生研究院文献>Scientific Reports >Comparison of three variant callers for human whole genome sequencing
【2h】

Comparison of three variant callers for human whole genome sequencing

机译:人类全基因组测序的三个变异调用者的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Testing of patients with genetics-related disorders is in progress of shifting from single gene assays to gene panel sequencing, whole-exome sequencing (WES) and whole-genome sequencing (WGS). Since WGS is unquestionably becoming a new foundation for molecular analyses, we decided to compare three currently used tools for variant calling of human whole genome sequencing data. We tested DeepVariant, a new TensorFlow machine learning-based variant caller, and compared this tool to GATK 4.0 and SpeedSeq, using 30×, 15× and 10× WGS data of the well-known NA12878 DNA reference sample. According to our comparison, the performance on SNV calling was almost similar in 30× data, with all three variant callers reaching F-Scores (i.e. harmonic mean of recall and precision) equal to 0.98. In contrast, DeepVariant was more precise in indel calling than GATK and SpeedSeq, as demonstrated by F-Scores of 0.94, 0.90 and 0.84, respectively. We conclude that the DeepVariant tool has great potential and usefulness for analysis of WGS data in medical genetics.
机译:遗传相关疾病患者的测试正在从单基因测定转向基因组测序,全外显子组测序(WES)和全基因组测序(WGS)。由于WGS毫无疑问将成为分子分析的新基础,因此我们决定比较三种当前使用的用于人类全基因组测序数据变异调用的工具。我们测试了新的基于TensorFlow机器学习的变体调用程序DeepVariant,并将此工具与GATK 4.0和SpeedSeq进行了比较,并使用了著名的NA12878 DNA参考样品的30x,15x和10x WGS数据。根据我们的比较,在30倍数据中,SNV呼叫的性能几乎相似,所有三个变体呼叫者的F分数(即召回率和查准率的谐波平均值)均等于0.98。相反,如F分数分别为0.94、0.90和0.84所示,DeepVariant在indel调用方面比GATK和SpeedSeq更精确。我们得出的结论是,DeepVariant工具对于分析医学遗传学中的WGS数据具有巨大的潜力和实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号