首页> 美国卫生研究院文献>Scientific Reports >Acceleration of the precession frequency for optically-oriented electron spins in ferromagnetic/semiconductor hybrids
【2h】

Acceleration of the precession frequency for optically-oriented electron spins in ferromagnetic/semiconductor hybrids

机译:铁磁/半导体混合体中光学取向电子自旋的进动频率加速

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Time-resolved Kerr rotation measurements were performed in InGaAs/GaAs quantum wells nearby a doped Mn delta layer. Our magneto-optical results show a typical time evolution of the optically-oriented electron spin in the quantum well. Surprisingly, this is strongly affected by the Mn spins, resulting in an increase of the spin precession frequency in time. This increase is attributed to the variation in the effective magnetic field induced by the dynamical relaxation of the Mn spins. Two processes are observed during electron spin precession: a quasi-instantaneous alignment of the Mn spins with photo-excited holes, followed by a slow alignment of Mn spins with the external transverse magnetic field. The first process leads to an equilibrium state imprinted in the initial precession frequency, which depends on pump power, while the second process promotes a linear frequency increase, with acceleration depending on temperature and external magnetic field. This observation yields new information about exchange process dynamics and on the possibility of constructing spin memories, which can rapidly respond to light while retaining information for a longer period.
机译:在掺杂的Mnδ层附近的InGaAs / GaAs量子阱中进行了时间分辨的Kerr旋转测量。我们的磁光结果显示了量子阱中光学取向的电子自旋的典型时间演化。令人惊讶地,这受到Mn自旋的强烈影响,导致自旋进动频率随时间增加。这种增加归因于由Mn自旋的动态弛豫引起的有效磁场的变化。电子自旋进动过程中观察到两个过程:Mn自旋与光激发空穴的准瞬时对准,然后Mn自旋与外部横向磁场的缓慢对准。第一个过程导致在初始进动频率上施加平衡状态,该平衡状态取决于泵浦功率,而第二个过程则促进线性频率增加,加速度取决于温度和外部磁场。这种观察产生了有关交换过程动力学和构造自旋存储器的可能性的新信息,自旋存储器可以快速响应光,同时保留较长时间的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号