首页> 外文学位 >Magnetism, semiconductors and spins: Hybrid ferromagnetic semiconductor and semiconductor spintronic systems.
【24h】

Magnetism, semiconductors and spins: Hybrid ferromagnetic semiconductor and semiconductor spintronic systems.

机译:磁性,半导体和自旋:混合铁磁半导体和半导体自旋电子系统。

获取原文
获取原文并翻译 | 示例

摘要

The physics of semiconducting and magnetic materials is of considerable interest for both fundamental condensed matter science and technological applications. Over the past few decades, rapid advances in the fabrication of hetero- and nano-structured materials have resulted in an accelerated focus on the effects of restricted dimensionality in both semiconducting and magnetic materials. However, such studies have largely followed parallel but separate tracks. In this dissertation, we report on experiments in “semiconductor spintronics” that bridge these disparate areas, with the generic goal of exploring spin-dependent phenomena in semiconductors. We focus on three distinct classes of condensed matter systems (paramagnetic semiconductor heterostructures, hybrid ferromagnet/semiconductor heterostructures, and optically-pumped conventional semiconductor heterostructures) whose defining commonality is the importance of spin.; The first experiments describe a variation on the traditional two dimensional gas (2DEG) in a modulation doped semiconductor quantum well. Unlike a conventional 2DEG, we study a system in which the electron gas is strongly coupled to magnetic moments. We develop growth methods that improved the carrier mobility in these “magnetic” 2DEGs, enabling the fabrication of 2DEG superlattices in which the magnetically altered Landau level energy spectrum leads to novel magnetotransport characteristics.; The next system considered is a hybrid ferromagnet/semiconductor heterostructure in which MnAs (a metallic ferromagnet) is integrated with both a II-VI semiconductor (ZnSe) and a III-V semiconductor (GaAs). We report the first detailed studies of carrier transport in epitaxial MnAs, demonstrating the presence of two types of carriers (electrons and holes) in this material. This information is of importance to future experiments that will use MnAs as a spin injector in semiconductor spin devices. The strain present when MnAs is grown epitaxially on these zinc blende templates also results in novel magnetic and structural properties, including an intrinsic exchange biasing effect originating in the presence of a strain-stabilized secondary phase.; Finally, we discuss studies of conventional (non-magnetic) semiconductor heterostructures (ZnSe/GaAs) in which spin effects are made dominant by using circular polarized light to pump spin polarization into the conduction band Fermi sea. Femtosecond time resolved spectroscopy demonstrates the coherent transfer of spin information across a semiconductor heterointerface (from GaAs into heteroepitaxial ZnSe). In the absence of an applied electric field, a short burst of spin polarized electrons crosses the heterointerface with an efficiency of 10–15 percent. The application of an external electric field enhances this spin transfer efficiency by as much as 500%, as well as creating a new persistent mode of coherent spin transfer. In addition, the fabrication of p-GaAs/n-ZnSe bipolar heterojunctions show that the internal electric field of a p-n junction can also significantly enhance the relative spin transfer efficiency and move coherently precessing electrons from an environment of rapid dephasing (p-GaAs) to one where decoherence is minimized (n-ZnSe). The ability to independently tune the coherent spin transfer process using either electric or magnetic fields creates new opportunities in multifunctional semiconductor spintronics.
机译:半导体和磁性材料的物理学对于基本的凝聚态科学和技术应用都有相当大的兴趣。在过去的几十年中,异质和纳米结构材料制造的飞速发展导致人们更加关注半导体和磁性材料中尺寸受限的影响。但是,这样的研究很大程度上遵循了平行但分开的轨道。在本文中,我们报告了“半导体自旋电子学”中桥接这些不同领域的实验,其总体目标是探索半导体中与自旋有关的现象。我们将重点放在三类不同的凝聚态系统上(顺磁性半导体异质结构,混合铁磁体/半导体异质结构以及光泵浦的常规半导体异质结构),它们的定义共同点是自旋的重要性。最初的实验描述了调制掺杂半导体量子阱中传统二维气体(2DEG)的变化。与传统的2DEG不同,我们研究了一种电子气体与磁矩强烈耦合的系统。我们开发了生长方法,以改善这些“磁性” 2DEG中的载流子迁移率,从而能够制造2DEG超晶格,其中磁性改变的Landau能级能谱导致新颖的磁传输特性。考虑的下一个系统是混合铁磁体/半导体异质结构,其中MnAs(金属铁磁体)与II-VI半导体(ZnSe)和III-V半导体(GaAs)集成在一起。我们报告了外延MnAs中载流子传输的第一个详细研究,证明了这种材料中存在两种类型的载流子(电子和空穴)。此信息对于将来的实验非常重要,该实验将在半导体自旋器件中使用MnA作为自旋注入器。当MnAs外延生长在这些锌共混物模板上时,所产生的应变还导致新的磁性和结构特性,包括源自应变稳定的第二相的固有交换偏置效应。最后,我们讨论了常规(非磁性)半导体异质结构(ZnSe / GaAs)的研究,其中通过使用圆偏振光将自旋极化泵浦到导带费米海中,使自旋效应起主导作用。飞秒时间分辨光谱学证明了自旋信息在半导体异质界面(从GaAs到异质外延ZnSe)中的相干传递。在没有施加电场的情况下,自旋极化电子的短脉冲以10%至15%的效率穿过异质界面。外部电场的施加将这种自旋转移效率提高了多达500%,并且创建了一种新的持久性相干自旋转移模式。此外,p-GaAs / n-ZnSe双极异质结的制造表明,pn结的内部电场还可以显着提高相对自旋转移效率,并从快速移相(p-GaAs)的环境中相干地进动电子。退到相干最小的位置(n-ZnSe)。利用电场或磁场独立调节相干自旋转移过程的能力为多功能半导体自旋电子学带来了新的机遇。

著录项

  • 作者

    Berry, Joseph Jonathan.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

  • 入库时间 2022-08-17 11:46:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号