首页> 美国卫生研究院文献>Radiology >Quantitative Imaging in Cancer Evolution and Ecology
【2h】

Quantitative Imaging in Cancer Evolution and Ecology

机译:癌症进化与生态学中的定量成像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cancer therapy, even when highly targeted, typically fails because of the remarkable capacity of malignant cells to evolve effective adaptations. These evolutionary dynamics are both a cause and a consequence of cancer system heterogeneity at many scales, ranging from genetic properties of individual cells to large-scale imaging features. Tumors of the same organ and cell type can have remarkably diverse appearances in different patients. Furthermore, even within a single tumor, marked variations in imaging features, such as necrosis or contrast enhancement, are common. Similar spatial variations recently have been reported in genetic profiles. Radiologic heterogeneity within tumors is usually governed by variations in blood flow, whereas genetic heterogeneity is typically ascribed to random mutations. However, evolution within tumors, as in all living systems, is subject to Darwinian principles; thus, it is governed by predictable and reproducible interactions between environmental selection forces and cell phenotype (not genotype). This link between regional variations in environmental properties and cellular adaptive strategies may permit clinical imaging to be used to assess and monitor intratumoral evolution in individual patients. This approach is enabled by new methods that extract, report, and analyze quantitative, reproducible, and mineable clinical imaging data. However, most current quantitative metrics lack spatialness, expressing quantitative radiologic features as a single value for a region of interest encompassing the whole tumor. In contrast, spatially explicit image analysis recognizes that tumors are heterogeneous but not well mixed and defines regionally distinct habitats, some of which appear to harbor tumor populations that are more aggressive and less treatable than others. By identifying regional variations in key environmental selection forces and evidence of cellular adaptation, clinical imaging can enable us to define intratumoral Darwinian dynamics before and during therapy. Advances in image analysis will place clinical imaging in an increasingly central role in the development of evolution-based patient-specific cancer therapy.© RSNA, 2013
机译:即使是高度靶向的癌症治疗,也通常会因恶性细胞发展有效适应能力而失败。这些进化动力学在许多方面都是癌症系统异质性的原因和结果,范围从单个细胞的遗传特性到大规模成像特征。同一器官和细胞类型的肿瘤在不同患者中可能具有明显不同的外观。此外,即使在单个肿瘤内,成像特征的显着变化,例如坏死或对比度增强也是常见的。最近在遗传学资料中报告了类似的空间变化。肿瘤内的放射异质性通常受血流变化的控制,而遗传异质性通常归因于随机突变。但是,如同在所有生命系统中一样,肿瘤内的进化受制于达尔文原理。因此,它受环境选择力和细胞表型(而非基因型)之间可预测和可再现的相互作用支配。环境特性的区域变化与细胞适应策略之间的这种联系可以使临床成像可用于评估和监测单个患者的肿瘤内演变。通过提取,报告和分析定量,可重复和可挖掘的临床成像数据的新方法,可以启用此方法。然而,当前大多数定量指标缺乏空间性,将定量放射学特征表示为涵盖整个肿瘤的感兴趣区域的单个值。相反,空间显像图像分析认识到肿瘤是异质的但混合得不好,并定义了区域不同的栖息地,其中一些栖息地似乎比其他种群具有更具攻击性和治疗性的肿瘤种群。通过确定关键环境选择力的区域差异和细胞适应的证据,临床影像可以使我们在治疗前和治疗中定义瘤内达尔文动力学。图像分析的进步将使临床成像在基于进化的患者特异性癌症治疗方法的开发中发挥越来越重要的作用。©RSNA,2013

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号