首页> 美国卫生研究院文献>Proceedings. Mathematical Physical and Engineering Sciences >Two-dimensional translation-invariant probability distributions: approximations characterizations and no-go theorems
【2h】

Two-dimensional translation-invariant probability distributions: approximations characterizations and no-go theorems

机译:二维平移不变概率分布:逼近特征化和无定理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the properties of the set of marginal distributions of infinite translation-invariant systems in the two-dimensional square lattice. In cases where the local variables can only take a small number d of possible values, we completely solve the marginal or membership problem for nearest-neighbours distributions (d = 2, 3) and nearest and next-to-nearest neighbours distributions (d = 2). Remarkably, all these sets form convex polytopes in probability space. This allows us to devise an algorithm to compute the minimum energy per site of any TI Hamiltonian in these scenarios exactly. We also devise a simple algorithm to approximate the minimum energy per site up to arbitrary accuracy for the cases not covered above. For variables of a higher (but finite) dimensionality, we prove two no-go results. To begin, the exact computation of the energy per site of arbitrary TI Hamiltonians with only nearest-neighbour interactions is an undecidable problem. In addition, in scenarios with d≥2947, the boundary of the set of nearest-neighbour marginal distributions contains both flat and smoothly curved surfaces and the set itself is not semi-algebraic. This implies, in particular, that it cannot be characterized via semidefinite programming, even if we allow the input of the programme to include polynomials of nearest-neighbour probabilities.
机译:我们研究了二维方格中无限平移不变系统的边际分布集的性质。在局部变量只能取少量d的可能值的情况下,我们完全解决了最近邻分布(d = 2,3)以及最近邻和最近邻分布(d = 2)。值得注意的是,所有这些集合在概率空间中形成凸多面体。这使我们能够设计出一种算法,以在这些情况下精确计算任何TI哈密顿量的每个站点的最小能量。我们还设计了一种简单的算法,可以针对上述未涵盖的情况,将每个站点的最小能量近似达到任意精度。对于较高(但有限)维的变量,我们证明了两个不合格的结果。首先,仅具有最近邻相互作用的任意TI哈密顿量的每个位点的能量的精确计算是一个不确定的问题。另外,在d≥2947的情况下,最近邻边际分布集的边界既包含平坦曲面又包含光滑曲面,并且该集本身不是半代数的。尤其是,这意味着即使我们允许程序的输入包括最近邻概率的多项式,也无法通过半定值编程来表征它。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号