【2h】

A statistical state dynamics approach to wall turbulence

机译:壁湍流的统计状态动力学方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper reviews results obtained using statistical state dynamics (SSD) that demonstrate the benefits of adopting this perspective for understanding turbulence in wall-bounded shear flows. The SSD approach used in this work employs a second-order closure that retains only the interaction between the streamwise mean flow and the streamwise mean perturbation covariance. This closure restricts nonlinearity in the SSD to that explicitly retained in the streamwise constant mean flow together with nonlinear interactions between the mean flow and the perturbation covariance. This dynamical restriction, in which explicit perturbation–perturbation nonlinearity is removed from the perturbation equation, results in a simplified dynamics referred to as the restricted nonlinear (RNL) dynamics. RNL systems, in which a finite ensemble of realizations of the perturbation equation share the same mean flow, provide tractable approximations to the SSD, which is equivalent to an infinite ensemble RNL system. This infinite ensemble system, referred to as the stochastic structural stability theory system, introduces new analysis tools for studying turbulence. RNL systems provide computationally efficient means to approximate the SSD and produce self-sustaining turbulence exhibiting qualitative features similar to those observed in direct numerical simulations despite greatly simplified dynamics. The results presented show that RNL turbulence can be supported by as few as a single streamwise varying component interacting with the streamwise constant mean flow and that judicious selection of this truncated support or ‘band-limiting’ can be used to improve quantitative accuracy of RNL turbulence. These results suggest that the SSD approach provides new analytical and computational tools that allow new insights into wall turbulence.This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’.
机译:本文回顾了使用统计状态动力学(SSD)获得的结果,这些结果证明了采用这种观点来理解边界为边界的剪切流中的湍流的好处。在这项工作中使用的SSD方法采用了二阶闭包,该二阶闭包仅保留了流向平均流和流向平均扰动协方差之间的相互作用。这种闭合将SSD中的非线性限制为明确保留在沿流的平均流量中,以及平均流量和摄动协方差之间的非线性相互作用。这种动态限制从显式扰动方程中消除了显式扰动-扰动非线性,从而产生了简化的动力学,称为受限非线性(RNL)动力学。扰动方程的有限整体实现共享相同平均流量的RNL系统为SSD提供了易于处理的近似值,这等效于无限整体RNL系统。这个无限的集成系统,称为随机结构稳定性理论系统,引入了研究湍流的新分析工具。 RNL系统提供了计算有效的方法来逼近SSD并产生自持湍流,尽管动力学得到极大简化,但其湍流定性特征类似于直接数值模拟中观察到的定性特征。给出的结果表明,与流向恒定平均流相互作用的流向变化分量最少,可以支持RNL湍流,可以通过明智地选择这种截断的支撑或“带限”来提高RNL湍流的定量精度。这些结果表明,SSD方法提供了新的分析和计算工具,可为洞壁湍流提供新的见解。本文是主题“在大雷诺数下开发高保真度的洞壁湍流模型”的一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号