首页> 美国卫生研究院文献>Journal of Cell Science >Visualizing dynamic cytoplasmic forces with a compliance-matched FRET sensor
【2h】

Visualizing dynamic cytoplasmic forces with a compliance-matched FRET sensor

机译:使用符合性匹配的FRET传感器可视化动态胞质力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mechanical forces are ubiquitous modulators of cell activity but little is known about the mechanical stresses in the cell. Genetically encoded FRET-based force sensors now allow the measurement of local stress in specific host proteins in vivo in real time. For a minimally invasive probe, we designed one with a mechanical compliance matching that of many common cytoskeleton proteins. sstFRET is a cassette composed of Venus and Cerulean linked by a spectrin repeat. The stress sensitivity of the probe was measured in solution using DNA springs to push the donor and acceptor apart with 5–7 pN and this produced large changes in FRET. To measure cytoskeletal stress in vivo we inserted sstFRET into α-actinin and expressed it in HEK and BAEC cells. Time-lapse imaging showed the presence of stress gradients in time and space, often uncorrelated with obvious changes in cell shape. The gradients could be rapidly relaxed by thrombin-induced cell contraction associated with inhibition of myosin II. The tension in actinin fluctuated rapidly (scale of seconds) illustrating a cytoskeleton in dynamic equilibrium. Stress in the cytoskeleton can be driven by macroscopic stresses applied to the cell. Using sstFRET as a tool to measure internal stress, we tested the prediction that osmotic pressure increases cytoskeletal stress. As predicted, hypotonic swelling increased the tension in actinin, confirming the model derived from AFM. Anisotonic stress also produced a novel transient (~2 minutes) decrease in stress upon exposure to a hypotonic challenge, matched by a transient increase with hypertonic stress. This suggests that, at rest, the stress axis of actinin is not parallel to the stress axis of actin and that swelling can reorient actinin to lie more parallel where it can absorb a larger fraction of the total stress. Protein stress sensors are opening new perspectives in cell biology.
机译:机械力是细胞活动的普遍调节剂,但对细胞中的机械应力了解甚少。现在,基于基因编码的基于FRET的力传感器可以在体内实时测量特定宿主蛋白中的局部应力。对于微创探针,我们设计了一种具有与许多常见细胞骨架蛋白相匹配的机械顺应性的探针。 sstFRET是由金星和天青蛋白组成的盒带,通过血影蛋白重复序列​​连接。使用DNA弹簧在溶液中测量探针的应力敏感性,将供体和受体分开5–7 pN,这会导致FRET发生较大变化。为了测量体内细胞骨架压力,我们将sstFRET插入α-肌动蛋白中,并在HEK和BAEC细胞中表达。延时成像显示时空应力梯度的存在,通常与细胞形状的明显变化无关。凝血酶诱导的与肌球蛋白II抑制相关的细胞收缩可迅速放松梯度。肌动蛋白的张力迅速波动(秒级),说明细胞骨架处于动态平衡状态。施加在细胞上的宏观压力可以驱动细胞骨架中的压力。使用sstFRET作为测量内部压力的工具,我们测试了渗透压会增加细胞骨架压力的预测。如预期的那样,低渗性肿胀会增加肌动蛋白的张力,从而证实了源自AFM的模型。当暴露于低渗挑战时,等渗应力还导致应力的一种新的瞬时降低(约2分钟),与高渗应力的瞬时升高相匹配。这表明在静止时,肌动蛋白的应力轴与肌动蛋白的应力轴不平行,肿胀可使肌动蛋白重新定向为更平行,从而可以吸收更大比例的总应力。蛋白质应激传感器为细胞生物学开辟了新的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号