首页> 美国卫生研究院文献>The Journal of Chemical Physics >Differential geometry based solvation model. III. Quantum formulation
【2h】

Differential geometry based solvation model. III. Quantum formulation

机译:基于微分几何的溶剂化模型。三量子公式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Solvation is of fundamental importance to biomolecular systems. Implicit solvent models, particularly those based on the Poisson-Boltzmann equation for electrostatic analysis, are established approaches for solvation analysis. However, ad hoc solvent-solute interfaces are commonly used in the implicit solvent theory. Recently, we have introduced differential geometry based solvation models which allow the solvent-solute interface to be determined by the variation of a total free energy functional. Atomic fixed partial charges (point charges) are used in our earlier models, which depends on existing molecular mechanical force field software packages for partial charge assignments. As most force field models are parameterized for a certain class of molecules or materials, the use of partial charges limits the accuracy and applicability of our earlier models. Moreover, fixed partial charges do not account for the charge rearrangement during the solvation process. The present work proposes a differential geometry based multiscale solvation model which makes use of the electron density computed directly from the quantum mechanical principle. To this end, we construct a new multiscale total energy functional which consists of not only polar and nonpolar solvation contributions, but also the electronic kinetic and potential energies. By using the Euler-Lagrange variation, we derive a system of three coupled governing equations, i.e., the generalized Poisson-Boltzmann equation for the electrostatic potential, the generalized Laplace-Beltrami equation for the solvent-solute boundary, and the Kohn-Sham equations for the electronic structure. We develop an iterative procedure to solve three coupled equations and to minimize the solvation free energy. The present multiscale model is numerically validated for its stability, consistency and accuracy, and is applied to a few sets of molecules, including a case which is difficult for existing solvation models. Comparison is made to many other classic and quantum models. By using experimental data, we show that the present quantum formulation of our differential geometry based multiscale solvation model improves the prediction of our earlier models, and outperforms some explicit solvation model.
机译:溶剂化对于生物分子系统至关重要。隐式溶剂模型,特别是基于Poisson-Boltzmann方程进行静电分析的模型,是建立溶剂化分析的方法。但是,在隐式溶剂理论中通常使用临时溶剂-溶质界面。最近,我们引入了基于微分几何的溶剂化模型,该模型允许通过总自由能官能团的变化确定溶剂-溶质界面。在我们较早的模型中使用了原子固定的局部电荷(点电荷),这取决于现有的分子机械力场软件包对局部电荷的分配。由于大多数力场模型是针对特定种类的分子或材料进行参数化的,因此使用局部电荷会限制我们较早模型的准确性和适用性。而且,固定的部分电荷不能解决溶剂化过程中的电荷重排问题。本工作提出了一种基于微分几何的多尺度溶剂化模型,该模型利用了直接从量子力学原理计算出的电子密度。为此,我们构建了一个新的多尺度总能量函数,该函数不仅包括极性和非极性溶剂化贡献,还包括电子动能和势能。通过使用Euler-Lagrange变化,我们得出了一个由三个耦合控制方程组成的系统,即用于静电势的广义Poisson-Boltzmann方程,用于溶剂-溶质边界的广义Laplace-Beltrami方程以及Kohn-Sham方程用于电子结构。我们开发了一个迭代程序来求解三个耦合方程式并最大程度地减少溶剂化自由能。本多尺度模型的稳定性,一致性和准确性在数值上得到了验证,并应用于少数分子,包括现有溶剂化模型难以解决的情况。与许多其他经典模型和量子模型进行了比较。通过使用实验数据,我们表明基于微分几何的多尺度溶剂化模型的当前量子公式改进了我们较早模型的预测,并且优于某些显式溶剂化模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号