首页> 外文学位 >Differential geometry based multiscale modeling of solvation.
【24h】

Differential geometry based multiscale modeling of solvation.

机译:基于微分几何的溶剂化多尺度建模。

获取原文
获取原文并翻译 | 示例

摘要

Solvation is an elementary process in nature and is of paramount importance to many sophisticated chemical, biological and biomolecular processes. The understanding of solvation is an essential prerequisite for the quantitative description and analysis of biomolecular systems. Implicit solvent models, particularly those based on the Poisson-Boltzmann (PB) equation for electrostatic analysis, are established approaches for solvation analysis. However, ad hoc solvent-solute interfaces are commonly used in the implicit solvent theory and have some severe limitations.;We have introduced differential geometry based solvation models which allow the solvent-solute interface to be determined by the variation of a total free energy functional. Our models extend the scaled particle theory (SPT) of nonpolar solvation models with a solvent-solute interaction potential. The nonpolar solvation model is completed with a PB theory based polar solvation model. In our Eulerian formation, the differential geometry theory of hypersurface is utilized to define and construct smooth interfaces with good stability and differentiability, for use in characterizing the solvent-solute boundaries and in generating continuous dielectric functions across the computational domain. Some techniques from the geometric measure theory are employed to rigorously convert a Lagrangian formulation of the surface energy into an Eulerian formulation, so as to bring all energy terms on an equal footing. In our Lagrangian formulation, the differential geometry theory of surfaces is used to provide a natural description of solvent-solute interfaces. By optimizing the total free energy functional, we derive a coupling of the generalized Poisson-Boltzmann equation (GPBE) and the generalized geometric flow equation (GGFE or also called Laplace-Beltrami equation) for the electrostatic potential and the construction of realistic solvent-solute boundaries, respectively. The coupled partial differential equations (PDEs) are solved with iterative procedures to reach a steady state, which delivers the desired solvent-solute interface and electrostatic potential for many problems of interest. These quantities are utilized to evaluate the solvation free energies, protein-protein binding affinities, etc.;The above proposed approaches have been extensively validated. Extensive numerical experiments have been designed to validate the present theoretical models, to test the computational methods, and to optimize the numerical algorithms. Solvation analysis of both small compounds and proteins are carried out to further demonstrate the accuracy, stability, efficiency and robustness of the present new models and numerical approaches. Comparison is given to both experimental and theoretical results in the literature.;Moreover, to account for the charge rearrangement during the solvation process, we also propose a differential geometry based multiscale solvation model which makes use of electron densities computed directly from a quantum mechanical approach. We construct a new total energy functional, which consists of not only polar and nonpolar solvation contributions, but also the electronic kinetic and potential energies. We show that the quantum formulation of our solvation model improves the prediction of our earlier models, and outperforms some explicit solvation analysis.
机译:溶剂化是自然界中的基本过程,对于许多复杂的化学,生物和生物分子过程至关重要。对溶剂化的理解是定量描述和分析生物分子系统的必要前提。隐式溶剂模型,特别是基于Poisson-Boltzmann(PB)方程进行静电分析的模型,是建立溶剂化分析的方法。但是,临时溶剂-溶质界面通常在隐式溶剂理论中使用,并且存在一些严重的局限性。我们引入了基于微分几何的溶剂化模型,该模型允许通过总自由能官能团的变化确定溶剂-溶质界面。我们的模型扩展了具有溶剂-溶质相互作用潜能的非极性溶剂化模型的标度粒子理论(SPT)。非极性溶剂化模型由基于PB理论的极性溶剂化模型完成。在我们的欧拉地层中,超曲面的微分几何理论被用来定义和构造具有良好稳定性和可微性的光滑界面,用于表征溶剂-溶质边界并在整个计算域中生成连续的介电函数。运用了几何测量理论中的一些技术,将表面能的拉格朗日公式严格转换为欧拉公式,从而使所有能量项均等。在我们的拉格朗日公式中,表面的微分几何理论用于提供溶剂-溶质界面的自然描述。通过优化总自由能泛函,我们推导了广义Poisson-Boltzmann方程(GPBE)和广义几何流动方程(GGFE或也称为Laplace-Beltrami方程)的耦合,以建立实际的溶剂溶质边界。耦合的偏微分方程(PDE)通过迭代程序求解,以达到稳态,从而为许多关注的问题提供了所需的溶剂-溶质界面和静电势。利用这些量来评估溶剂化自由能,蛋白质与蛋白质的结合亲和力等。以上提出的方法已得到广泛验证。设计了广泛的数值实验,以验证当前的理论模型,测试计算方法并优化数值算法。对小化合物和蛋白质进行了溶剂化分析,以进一步证明本发明新模型和数值方法的准确性,稳定性,效率和鲁棒性。比较了文献中的实验结果和理论结果。;此外,为了说明溶剂化过程中的电荷重排,我们还提出了一种基于微分几何的多尺度溶剂化模型,该模型利用了直接从量子力学方法计算出的电子密度。我们构建了一个新的总能量函数,该函数不仅包括极性和非极性溶剂化贡献,还包括电子动能和势能。我们证明了溶剂化模型的量子公式改进了我们早期模型的预测,并且胜过了一些显式的溶剂化分析。

著录项

  • 作者

    Chen, Zhan.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 229 p.
  • 总页数 229
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号