首页> 美国卫生研究院文献>Journal of Bone and Mineral Research >Assessing Fracture Risk using Gradient Boosting Machine (GBM) Models
【2h】

Assessing Fracture Risk using Gradient Boosting Machine (GBM) Models

机译:使用梯度增强机(GBM)模型评估骨折风险

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Advanced bone imaging with quantitative computed tomography (QCT) has had limited success in significantly improving fracture prediction beyond standard areal bone mineral density (aBMD) measurements. Thus, we examined whether a machine learning paradigm, gradient boosting machine (GBM) modeling, which can incorporate diverse measurements of bone density and geometry from central QCT imaging and of bone microstructure from high-resolution peripheral QCT imaging, can improve fracture prediction. We studied two cohorts of postmenopausal women: 105 with and 99 without distal forearm fractures (Distal Forearm Cohort) and 40 with at least one grade 2 or 3 vertebral deformity and 78 with no vertebral fracture (Vertebral Cohort). Within each cohort, individual bone density, structure, or strength variables had areas under receiver operating characteristic curves (AUCs) ranging from 0.50 to 0.84 (median 0.61) for discriminating women with and without fracture. Using all possible variables in the GBM model, the AUCs were close to 1.0. Fracture predictions in the Vertebral Cohort using the GBM models built with the Distal Forearm Cohort had AUCs of 0.82–0.95, while predictions in the Distal Forearm Cohort using models built with the Vertebral Cohort had AUCs of 0.80–0.83. Attempts at capturing a comparable parametric model using the top variables from the Distal Forearm Cohort resulted in resulted in an AUC of 0.81. Relatively high AUCs for differing fracture types suggest that an underlying fracture propensity is being captured by this modeling approach. More complex modeling, such as with GBM, creates stronger fracture predictions and may allow deeper insights into information provided by advanced bone imaging techniques.
机译:定量计算机断层扫描(QCT)进行的高级骨成像在显着改善骨折预测值(超过标准面骨矿物质密度(aBMD)测量值)方面取得的成功有限。因此,我们研究了一种机器学习范例,梯度增强机器(GBM)建模是否可以改善骨折预测,该建模可以结合中央QCT成像对骨密度和几何形状以及高分辨率外周QCT成像对骨微结构的各种测量。我们研究了两个绝经后妇女队列:105例和99例无远端前臂骨折(远端前臂队列),40例至少有1级2或3级椎体畸形,78例无椎体骨折(椎骨队列)。在每个队列中,个体的骨密度,结构或强度变量在接受者操作特征曲线(AUC)下的区域范围从0.50到0.84(中位数0.61),以区分有无骨折的女性。使用GBM模型中的所有可能变量,AUC接近1.0。使用由前臂队列构建的GBM模型在椎骨队列中的骨折预测的AUC为0.82-0.95,而使用由前臂队列构建的模型在前臂队列中的骨折预测为AUC为0.80-0.83。尝试使用远端前臂队列的顶部变量捕获可比较的参数模型,结果AUC为0.81。对于不同类型的裂缝,相对较高的AUC值表明该建模方法正在捕获潜在的裂缝倾向。诸如GBM之类的更复杂的建模可以创建更强大的骨折预测,并且可以让您更深入地了解高级骨骼成像技术所提供的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号