首页> 美国卫生研究院文献>Journal of Biomechanical Engineering >An Axisymmetric Boundary Element Model for Determination of Articular Cartilage Pericellular Matrix Properties In situ via Inverse Analysis of Chondron Deformation
【2h】

An Axisymmetric Boundary Element Model for Determination of Articular Cartilage Pericellular Matrix Properties In situ via Inverse Analysis of Chondron Deformation

机译:通过软骨素变形反分析确定关节软骨周细胞基质特性的轴对称边界元模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The pericellular matrix (PCM) is the narrow tissue region surrounding all chondrocytes in articular cartilage and, together, the chondrocyte(s) and surrounding PCM have been termed the chondron. Previous theoretical and experimental studies suggest that the structure and properties of the PCM significantly influence the biomechanical environment at the microscopic scale of the chondrocytes within cartilage. In the present study, an axisymmetric boundary element method (BEM) was developed for linear elastic domains with internal interfaces. The new BEM was employed in a multiscale continuum model to determine linear elastic properties of the PCM in situ, via inverse analysis of previously reported experimental data for the three-dimensional morphological changes of chondrons within a cartilage explant in equilibrium unconfined compression (). The microscale geometry of the chondron (cell and PCM) within the cartilage extracellular matrix (ECM) was represented as a three-zone equilibrated biphasic region comprised of an ellipsoidal chondrocyte with encapsulating PCM that was embedded within a spherical ECM subjected to boundary conditions for unconfined compression at its outer boundary. Accuracy of the three-zone BEM model was evaluated and compared to analytical finite element solutions. The model was then integrated with a nonlinear optimization technique (Nelder-Mead) to determine PCM elastic properties within the cartilage explant by solving an inverse problem associated with the in situ experimental data for chondron deformation. Depending on the assumed material properties of the ECM and the choice of cost function in the optimization, estimates of the PCM Young’s modulus ranged from ~24 to 59 kPa, consistent with previous measurements of PCM properties on extracted chondrons using micropipette aspiration. Taken together with previous experimental and theoretical studies of cell-matrix interactions in cartilage, these findings suggest an important role for the PCM in modulating the mechanical environment of the chondrocyte.
机译:细胞周基质(PCM)是围绕关节软骨中所有软骨细胞的狭窄组织区域,并且软骨细胞和周围的PCM一起被称为软骨。先前的理论和实验研究表明,PCM的结构和性质在软骨内软骨细胞的微观尺度上显着影响生物力学环境。在本研究中,针对具有内部界面的线性弹性域,开发了轴对称边界元方法(BEM)。通过对先前报道的软骨外植体中软骨在平衡无限制压迫下的三维形态学变化的实验数据进行逆分析,在多尺度连续模型中采用了新的BEM来确定PCM的线性弹性特性。软骨细胞外基质(ECM)中软骨细胞的微尺度几何结构(细胞和PCM)表示为三区域平衡的双相区域,该区域由椭圆形软骨细胞组成,囊状PCM嵌入球形ECM内,受到边界条件的限制在其外边界压缩。评估了三区域BEM模型的准确性,并将其与分析有限元解决方案进行了比较。然后,该模型与非线性优化技术(Nelder-Mead)集成在一起,通过解决与软骨素变形的原位实验数据相关的反问题来确定软骨外植体中的PCM弹性。根据ECM假定的材料特性和优化中对成本函数的选择,PCM杨氏模量的估计范围在〜24至59 kPa之间,这与以前使用微量移液器抽吸提取的软骨上PCM特性的测量结果一致。结合以前的软骨中细胞-基质相互作用的实验和理论研究,这些发现表明PCM在调节软骨细胞的机械环境中具有重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号