首页> 外文学位 >Computational biomechanical models for the pericellular matrix of articular cartilage.
【24h】

Computational biomechanical models for the pericellular matrix of articular cartilage.

机译:关节软骨细胞周围基质的计算生物力学模型。

获取原文
获取原文并翻译 | 示例

摘要

Articular cartilage is a resilient biological soft tissue that serves to support load in diarthrodial joints such as the knee, shoulder and hip. Cartilage can be idealized as a biphasic mixture that is comprised of a solid extracellular matrix (ECM) saturated by interstitial fluid. Cartilage ECM is maintained by a sparse population of cells called chondrocytes, which are surrounded by a narrow layer called the pericellular matrix (PCM). Together, the chondrocyte and its surrounding PCM are termed the chondron. Since cartilage is avascular and aneural, cell metabolic activity is highly dependent upon the mechanical characteristics of the local extracellular environment. However, the relationships between microscopic and macroscopic biphasic mechanical variables are not well understood. This research is motivated by the need to quantify these relationships. Two computational models were developed pertaining to mechanical interactions between the cells, the PCM and the ECM of articular cartilage.;In the first study, a transient finite element model (FEM) was developed for linear biphasic mechanics in the microscopic environment of a single cell within a cartilage layer under cyclic loading in confined compression. The microscopic domain was modeled as a micron-scale cylinder of ECM with a spherical inclusion arising from the presence of a single cell and its encapsulating PCM. Boundary conditions for the three-zone microscale model were generated using an analytical solution for macroscopic cyclic confined compressive loading of a cartilage layer. To perform these simulations, an axisymmetric displacement- velocity penalty biphasic FEM was implemented as a weak formulation in the software package Comsol Multiphysics. Accuracy of the implementation was verified against known analytical solutions for cyclic compressive loading of a biphasic layer, and dynamic radial deformation of a layered biphasic sphere. The microscale biphasic FEM was employed to analyze the effects of frequency on biphasic mechanical variables in the cellular microenvironment under macroscopic cyclic confined compressive loading at 1% engineering strain, and in the frequency range 0.01-1 Hz.;The second investigation consisted of the formulation, implementation and application of a multiscale axisymmetric elastic boundary element method (BEM) for simulating in situ chondron deformation in states of mechanical equilibrium within a cartilage explant under equilibrated unconfined compression. The microscopic domain was modeled as a micron-scale sphere of ECM with an ellipsoidal inclusion, representing the chondron. Boundary conditions for this microscale model were generated using a known analytical solution for unconfined compression of a cartilage layer. Accuracy of the three-zone BEM was evaluated and compared to analytical solutions and finite element solutions. The BEM was then integrated with a nonlinear optimization technique (Nelder-Mead) to determine PCM elastic properties in situ within the ECM of the cartilage explant by solving an inverse problem associated with the experimental data.
机译:关节软骨是一种有弹性的生物软组织,可用于支撑双膝关节(如膝盖,肩膀和臀部)的负荷。软骨可以理想化为由间质液饱和的固体细胞外基质(ECM)组成的两相混合物。软骨ECM由称为软骨细胞的稀疏细胞群维持,这些细胞被称为周细胞基质(PCM)的狭窄层包围。软骨细胞及其周围的PCM一起称为软骨。由于软骨是无血管的和无神经的,所以细胞代谢活性高度依赖于局部细胞外环境的机械特性。但是,微观和宏观双相机械变量之间的关系还没有很好地理解。这项研究的动机是需要量化这些关系。建立了两个与细胞之间的机械相互作用有关的计算模型,即PCM和关节软骨的ECM。在第一项研究中,为单个细胞的微观环境中的线性双相力学建立了瞬态有限元模型(FEM)。在有限的压缩作用下承受循环载荷的软骨层中。将微观域建模为ECM的微米级圆柱体,其球形夹杂物源自单个细胞及其封装PCM的存在。使用用于软骨层的宏观循环受限压缩载荷的分析解决方案,生成了三区域微尺度模型的边界条件。为了执行这些模拟,在Comsol Multiphysics软件包中将轴对称位移速度罚分双相FEM作为弱公式来实现。相对于已知的双相层的循环压缩载荷和层状双相球体的动态径向变形的解析方法,验证了实现的准确性。微观双相有限元法用于分析频率在宏观循环有限压缩载荷为1%工程应变,频率范围为0.01-1 Hz的情况下对细胞微环境中双相机械变量的影响。 ,多尺度轴对称弹性边界元方法(BEM)的实现和应用,用于模拟在平衡的无侧限压缩下软骨外植体内机械平衡状态下的原位软骨素变形。微观区域被建模为具有椭圆形夹杂物的ECM微米级球体,代表了球状体。使用已知的解析解决方案,无限制地压缩软骨层,可以生成此微观模型的边界条件。评估了三区域边界元法的准确性,并将其与分析解决方案和有限元解决方案进行了比较。然后,通过解决与实验数据相关的反问题,将BEM与非线性优化技术(Nelder-Mead)集成在一起,以确定软骨外植体ECM中的PCM弹性特性。

著录项

  • 作者

    Kim, Eunjung.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:59

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号