首页> 美国卫生研究院文献>Journal of Biomechanical Engineering >Comparison of Approaches to Quantify Arterial Damping Capacity From Pressurization Tests on Mouse Conduit Arteries
【2h】

Comparison of Approaches to Quantify Arterial Damping Capacity From Pressurization Tests on Mouse Conduit Arteries

机译:从小鼠导管动脉加压测试量化动脉阻尼能力的方法比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Large conduit arteries are not purely elastic, but viscoelastic, which affects not only the mechanical behavior but also the ventricular afterload. Different hysteresis loops such as pressure-diameter, pressure-luminal cross-sectional area (LCSA), and stress–strain have been used to estimate damping capacity, which is associated with the ratio of the dissipated energy to the stored energy. Typically, linearized methods are used to calculate the damping capacity of arteries despite the fact that arteries are nonlinearly viscoelastic. The differences in the calculated damping capacity between these hysteresis loops and the most common linear and correct nonlinear methods have not been fully examined. The purpose of this study was thus to examine these differences and to determine a preferred approach for arterial damping capacity estimation. Pressurization tests were performed on mouse extralobar pulmonary and carotid arteries in their physiological pressure ranges with pressure (P) and outer diameter (OD) measured. The P-inner diameter (ID), P-stretch, P-Almansi strain, P-Green strain, P-LCSA, and stress–strain loops (including the Cauchy and Piola-Kirchhoff stresses and Almansi and Green strains) were calculated using the P-OD data and arterial geometry. Then, the damping capacity was calculated from these loops with both linear and nonlinear methods. Our results demonstrate that the linear approach provides a reasonable approximation of damping capacity for all of the loops except the Cauchy stress-Almansi strain, for which the estimate of damping capacity was significantly smaller (22 ± 8% with the nonlinear method and 31 ± 10% with the linear method). Between healthy and diseased extralobar pulmonary arteries, both methods detected significant differences. However, the estimate of damping capacity provided by the linear method was significantly smaller (27 ± 11%) than that of the nonlinear method. We conclude that all loops except the Cauchy stress-Almansi strain loop can be used to estimate artery wall damping capacity in the physiological pressure range and the nonlinear method is recommended over the linear method.
机译:大导管动脉不是纯粹的弹性而是粘弹性的,不仅影响机械行为,还影响心室后负荷。已使用不同的磁滞回线(例如,压力直径,压力腔横截面积(LCSA)和应力-应变)来估计阻尼能力,该能力与耗散能量与存储能量的比率有关。通常,尽管动脉是非线性粘弹性的,但仍使用线性化方法来计算动脉的阻尼能力。这些磁滞回线与最常用的线性和正确非线性方法之间的计算阻尼能力差异尚未得到充分检验。因此,本研究的目的是检查这些差异,并确定用于估计动脉阻尼能力的首选方法。在小鼠肺叶外肺动脉和颈动脉的生理压力范围内进行加压测试,并测量压力(P)和外径(OD)。计算P内径(ID),P拉伸,P-Almansi应变,P-Green应变,P-LCSA和应力-应变环(包括Cauchy和Piola-Kirchhoff应力以及Almansi和Green应变),方法是: P-OD数据和动脉几何形状。然后,使用线性和非线性方法从这些回路计算阻尼能力。我们的结果表明,线性方法为除Cauchy应力-Almansi应变之外的所有环路提供了合理的阻尼能力近似值,对于后者,阻尼能力的估计值明显较小(非线性方法为22±8%,非线性方法为31±10 %(使用线性方法)。在健康和患病的肺叶外肺动脉之间,两种方法均检测到显着差异。然而,与非线性方法相比,线性方法提供的阻尼能力估计值要小得多(27%±11%)。我们得出的结论是,除了柯西应力-阿尔曼斯应变环路以外的所有环路都可用于估计生理压力范围内的动脉壁阻尼能力,因此建议使用非线性方法而非线性方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号