首页> 美国卫生研究院文献>American Journal of Physiology - Gastrointestinal and Liver Physiology >Innovative and Emerging Technologies in GI Physiology and Disease: Adult zebrafish intestine resection: a novel model of short bowel syndrome adaptation and intestinal stem cell regeneration
【2h】

Innovative and Emerging Technologies in GI Physiology and Disease: Adult zebrafish intestine resection: a novel model of short bowel syndrome adaptation and intestinal stem cell regeneration

机译:胃肠生理和疾病方面的创新技术:成年斑马鱼肠切除术:短肠综合征适应性和肠道干细胞再生的新型模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Loss of significant intestinal length from congenital anomaly or disease may lead to short bowel syndrome (SBS); intestinal failure may be partially offset by a gain in epithelial surface area, termed adaptation. Current in vivo models of SBS are costly and technically challenging. Operative times and survival rates have slowed extension to transgenic models. We created a new reproducible in vivo model of SBS in zebrafish, a tractable vertebrate model, to facilitate investigation of the mechanisms of intestinal adaptation. Proximal intestinal diversion at segment 1 (S1, equivalent to jejunum) was performed in adult male zebrafish. SBS fish emptied distal intestinal contents via stoma as in the human disease. After 2 wk, S1 was dilated compared with controls and villus ridges had increased complexity, contributing to greater villus epithelial perimeter. The number of intervillus pockets, the intestinal stem cell zone of the zebrafish increased and contained a higher number of bromodeoxyuridine (BrdU)-labeled cells after 2 wk of SBS. Egf receptor and a subset of its ligands, also drivers of adaptation, were upregulated in SBS fish. Igf has been reported as a driver of intestinal adaptation in other animal models, and SBS fish exposed to a pharmacological inhibitor of the Igf receptor failed to demonstrate signs of intestinal adaptation, such as increased inner epithelial perimeter and BrdU incorporation. We describe a technically feasible model of human SBS in the zebrafish, a faster and less expensive tool to investigate intestinal stem cell plasticity as well as the mechanisms that drive intestinal adaptation.
机译:先天性异常或疾病导致肠道长度明显减少,可能导致短肠综合征(SBS);肠衰竭可能被上皮表面积的增加部分抵消,这被称为适应。当前的SBS的体内模型是昂贵的并且在技术上具有挑战性。手术时间和生存率减慢了转基因模型的推广。我们在斑马鱼中创建了一种新的可重现的SBS体内模型,这是一种易于处理的脊椎动物模型,以促进对肠道适应机制的研究。在成年雄性斑马鱼中进行了第1节的近端肠转移(S1,相当于空肠)。与人类疾病一样,SBS鱼通过造口清空了远端肠内容物。 2周后,与对照组相比,S1扩张了,绒毛的复杂性增加,导致绒毛上皮周长变大。 SBS接种2周后,斑马鱼肠道干细胞区,肠道干细胞区的数量增加,并且含有更多的溴脱氧尿苷(BrdU)标记的细胞。在SBS鱼中,Egf受体及其配体的子集(也是适应的驱动因素)被上调。据报道,在其他动物模型中,Igf是肠道适应的驱动力,暴露于Igf受体的药理抑制剂的SBS鱼未能显示出肠道适应的迹象,例如内上皮周长增加和BrdU掺入。我们描述了斑马鱼中人类SBS的技术上可行的模型,一种更快,更便宜的工具来研究肠道干细胞的可塑性以及驱动肠道适应的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号