首页> 美国卫生研究院文献>Journal of NeuroEngineering and Rehabilitation >On neuromechanical approaches for the study of biological and robotic grasp and manipulation
【2h】

On neuromechanical approaches for the study of biological and robotic grasp and manipulation

机译:关于研究生物和机器人抓握和操纵的神经力学方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank and open-minded assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas at the interface of neuromechanics, neuroscience, rehabilitation and robotics.
机译:无可否认,在机械任务执行方面,生物和机器人的抓取和操纵是相似的。但是,根据定义,它们的基本生物学机制与工程机制却有很大不同,甚至可能是相反的。甚至我们在每种方法上都截然相反:用于生物系统研究的归纳科学与用于机器人系统设计和构造的工程综合。在过去的20年中,这两个领域在概念上取得了一些进步,并寻求统一它们。其中最主要的是,他们不情愿地意识到其潜在的基本机制实际上可能共享有限的共同点,同时表现出许多基本差异。这种认识尤其是自由的,因为它使我们能够解决并超越由最初对合理的大共识的合理假设所引起的多重悖论和矛盾。在这里,我们首先介绍神经力学的观点,该观点强调,现实世界的行为是由系统物理结构,任务的机械要求,可行的神经控制动作以及产生该能力的能力之间的紧密相互作用产生的通过与环境的相互作用来适应神经肌肉系统。这使我们可以清楚地概述一些明显的概念悖论和矛盾,这些矛盾涉及以下两个方面:机械设计不足,机械决定过度,控制不足,驱动过度,规定功能与紧急功能,学习,实施与适应,说明性与描述性协同作用,以及最佳与习惯性表现。最后,我们提出一些未解决的问题,并为以后的研究提出建议。我们希望这项对最新技术的坦率和开放的评估将鼓励和指导这些社区在神经力学,神经科学,康复和机器人技术的界面上继续互动并在这些重要领域取得进展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号