首页> 美国卫生研究院文献>Bioinformatics >Phylogenetic inference under recombination using Bayesian stochastic topology selection
【2h】

Phylogenetic inference under recombination using Bayesian stochastic topology selection

机译:贝叶斯随机拓扑选择在重组下的系统发育推断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Motivation: Conventional phylogenetic analysis for characterizing the relatedness between taxa typically assumes that a single relationship exists between species at every site along the genome. This assumption fails to take into account recombination which is a fundamental process for generating diversity and can lead to spurious results. Recombination induces a localized phylogenetic structure which may vary along the genome. Here, we generalize a hidden Markov model (HMM) to infer changes in phylogeny along multiple sequence alignments while accounting for rate heterogeneity; the hidden states refer to the unobserved phylogenic topology underlying the relatedness at a genomic location. The dimensionality of the number of hidden states (topologies) and their structure are random (not known a priori) and are sampled using Markov chain Monte Carlo algorithms. The HMM structure allows us to analytically integrate out over all possible changepoints in topologies as well as all the unknown branch lengths.>Results: We demonstrate our approach on simulated data and also to the genome of a suspected HIV recombinant strain as well as to an investigation of recombination in the sequences of 15 laboratory mouse strains sequenced by Perlegen Sciences. Our findings indicate that our method allows us to distinguish between rate heterogeneity and variation in phylogeny caused by recombination without being restricted to 4-taxa data.>Availability: The method has been implemented in JAVA and is available, along with data studied here, from .>Contact: >Supplementary information: are available at Bioinformatics online.
机译:>动机:用于表征分类群之间相关性的常规系统发育分析通常假设基因组中每个位置的物种之间都存在单一关系。该假设没有考虑到重组,重组是产生多样性的基本过程,并且可能导致虚假结果。重组诱导局部的系统发生结构,其可以沿基因组变化。在这里,我们概括了一个隐马尔可夫模型(HMM),以推断出沿多个序列比对的系统发育变化,同时考虑了速率异质性。隐藏状态是指在基因组位置的相关性之下的未观察到的系统发育拓扑。隐藏状态数(拓扑)的维数及其结构是随机的(先验未知),并使用马尔可夫链蒙特卡洛算法进行采样。 HMM结构使我们能够分析整合拓扑中所有可能的变化点以及所有未知分支长度。>结果:我们展示了我们在模拟数据以及可疑HIV重组体基因组上的方法以及对Perlegen Sciences测序的15种实验室小鼠品系的序列进行重组研究。我们的发现表明,我们的方法使我们能够区分速率异质性和重组引起的系统发育变异,而不受限于4个分类单元数据。>可用性:该方法已在JAVA中实现,并且可用于此处提供研究数据。>联系方式: >补充信息可在在线生物信息学中获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号