首页> 美国卫生研究院文献>Bioinformatics >Integrative random forest for gene regulatory network inference
【2h】

Integrative random forest for gene regulatory network inference

机译:整合随机森林进行基因调控网络推断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Motivation: Gene regulatory network (GRN) inference based on genomic data is one of the most actively pursued computational biological problems. Because different types of biological data usually provide complementary information regarding the underlying GRN, a model that integrates big data of diverse types is expected to increase both the power and accuracy of GRN inference. Towards this goal, we propose a novel algorithm named iRafNet: integrative random forest for gene regulatory network inference.>Results: iRafNet is a flexible, unified integrative framework that allows information from heterogeneous data, such as protein–protein interactions, transcription factor (TF)-DNA-binding, gene knock-down, to be jointly considered for GRN inference. Using test data from the DREAM4 and DREAM5 challenges, we demonstrate that iRafNet outperforms the original random forest based network inference algorithm (GENIE3), and is highly comparable to the community learning approach. We apply iRafNet to construct GRN in Saccharomyces cerevisiae and demonstrate that it improves the performance in predicting TF-target gene regulations and provides additional functional insights to the predicted gene regulations.>Availability and implementation: The R code of iRafNet implementation and a tutorial are available at: >Contact: >Supplementary information: are available at Bioinformatics online.
机译:>动机:基于基因组数据的基因调控网络(GRN)推理是最积极追求的计算生物学问题之一。由于不同类型的生物数据通常会提供有关基础GRN的补充信息,因此,集成各种类型大数据的模型有望提高GRN推断的能力和准确性。为了实现这一目标,我们提出了一种名为iRafNet的新颖算法:用于基因调控网络推断的集成随机森林。>结果: iRafNet是一个灵活的,统一的集成框架,它允许来自异类数据的信息,例如蛋白质相互作用,转录因子(TF)-DNA结合,基因敲低,将共同考虑用于GRN推断。使用来自DREAM4和DREAM5挑战的测试数据,我们证明iRafNet优于原始的基于随机森林的网络推理算法(GENIE3),并且与社区学习方法高度可比。我们将iRafNet应用于酿酒酵母中构建GRN,并证明它改善了预测TF-靶基因调控的性能,并为预测的基因调控提供了更多的功能见解。>可用性和实现: iRafNet的R代码实施和教程可从以下网站获得:>联系方式: >补充信息:可从在线生物信息学获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号