首页> 美国卫生研究院文献>Biostatistics (Oxford England) >Variable selection in the presence of missing data: resampling and imputation
【2h】

Variable selection in the presence of missing data: resampling and imputation

机译:在缺少数据的情况下进行变量选择:重采样和插补

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the presence of missing data, variable selection methods need to be tailored to missing data mechanisms and statistical approaches used for handling missing data. We focus on the mechanism of missing at random and variable selection methods that can be combined with imputation. We investigate a general resampling approach (BI-SS) that combines bootstrap imputation and stability selection, the latter of which was developed for fully observed data. The proposed approach is general and can be applied to a wide range of settings. Our extensive simulation studies demonstrate that the performance of BI-SS is the best or close to the best and is relatively insensitive to tuning parameter values in terms of variable selection, compared with several existing methods for both low-dimensional and high-dimensional problems. The proposed approach is further illustrated using two applications, one for a low-dimensional problem and the other for a high-dimensional problem.
机译:在缺少数据的情况下,变量选择方法需要针对丢失的数据机制和用于处理丢失数据的统计方法进行调整。我们关注可与推算相结合的随机和变量选择方法的缺失机理。我们研究了一种通用的重采样方法(BI-SS),该方法结合了自举插补和稳定性选择,后者是为全面观察的数据而开发的。所提出的方法是通用的,并且可以应用于多种设置。我们广泛的仿真研究表明,与现有的几种解决低维和高维问题的方法相比,BI-SS的性能最佳或接近最佳,并且在变量选择方面对调整参数值相对不敏感。使用两个应用程序进一步说明了所提出的方法,一个应用程序用于低维问题,另一个应用程序用于高维问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号