首页> 美国卫生研究院文献>American Journal of Physiology - Lung Cellular and Molecular Physiology >In situ determination of alveolar septal strain stress and effective Youngs modulus: an experimental/computational approach
【2h】

In situ determination of alveolar septal strain stress and effective Youngs modulus: an experimental/computational approach

机译:原位测定肺泡间隔应力和有效杨氏模量:一种实验/计算方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Alveolar septa, which have often been modeled as linear elements, may distend due to inflation-induced reduction in slack or increase in tissue stretch. The distended septum supports tissue elastic and interfacial forces. An effective Young's modulus, describing the inflation-induced relative displacement of septal end points, has not been determined in situ for lack of a means of determining the forces supported by septa in situ. Here we determine such forces indirectly according to Mead, Takishima, and Leith's classic lung mechanics analysis (J Appl Physiol 28: 596–608, 1970), which demonstrates that septal connections transmit the transpulmonary pressure, PTP, from the pleural surface to interior regions. We combine experimental septal strain determination and computational stress determination, according to Mead et al., to calculate effective Young's modulus. In the isolated, perfused rat lung, we label the perfusate with fluorescence to visualize the alveolar septa. At eight PTP values around a ventilation loop between 4 and 25 cmH2O, and upon total deflation, we image the same region by confocal microscopy. Within an analysis region, we measure septal lengths. Normalizing by unstressed lengths at total deflation, we calculate septal strains for all PTP > 0 cmH2O. For the static imaging conditions, we computationally model application of PTP to the boundary of the analysis region and solve for septal stresses by least squares fit of an overdetermined system. From group septal strain and stress values, we find effective septal Young's modulus to range from 1.2 × 105 dyn/cm2 at low PTP to 1.4 × 106 dyn/cm2 at high PTP.
机译:肺泡隔垫(通常被建模为线性元素)可能因充气引起的松弛减少或组织舒张增加而扩大。扩张的隔膜支持组织弹性和界面力。由于缺乏确定原位隔垫支撑力的方法,因此尚未就位确定有效的杨氏模量,该杨氏模量描述了充气引起的隔垫端点的相对位移。在这里,我们根据米德(Mead),T岛(Takishima)和利斯(Leith)的经典肺力学分析(J Appl Physiol 28:596-608,1970)间接确定了这些力,这表明隔室连接将经肺压PTP从胸膜表面传递到内部区域。 。根据Mead等人的研究,我们将实验中的隔片应变确定与计算应力确定相结合,以计算有效的杨氏模量。在分离的灌注大鼠肺中,我们用荧光标记灌注液以可视化肺泡间隔。在4至25 cmH2O之间的通风回路周围的八个PTP值处,以及在完全放气后,我们通过共聚焦显微镜对同一区域成像。在分析区域内,我们测量间隔长度。通过总收缩时的无应力长度进行归一化,我们计算所有PTP> 0 cmH2O的间隔应变。对于静态成像条件,我们以计算模型对P​​TP在分析区域边界上的应用进行建模,并通过超定系统的最小二乘拟合来解决间隔应力。从组的间隔应变和应力值,我们发现有效的间隔杨氏模量范围从低PTP时的1.2×10 5 dyn / cm 2 到1.4×10 6 dyn / cm 2 在高PTP时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号