首页> 美国卫生研究院文献>AMIA Annual Symposium Proceedings >Augmenting community-level social determinants of health data with individual-level survey data
【2h】

Augmenting community-level social determinants of health data with individual-level survey data

机译:使用个人级别的调查数据增强社区级别的健康数据社会决定因素

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Social determinants of health (SDH) such as education and socioeconomic status are strongly associated with health and health outcomes. Incorporating SDH variables into clinical data sets could therefore improve the accuracy of predictive analytics, but individual-level SDH are rarely available and must be inferred from community-level data. We propose a method for doing so leveraging the joint probability distribution of the basic demographics available from the patient’s clinical record and known community-level SDH. We demonstrate the method using two data sets, the New York City (NYC) subset of the US census data and the NYC Health and Nutrition Estimation Survey (NYCHANES) and provide sample results for 2 census tracts in NYC. The advantage of this approach is that it does not simplistically assume that all residents within a census tract share the same average/median socioeconomic status, but instead recognizes and leverages the strong known associations between demographics and SDH within localities. Results could explain some of the discrepancies appearing in the SDH-big data literature. Future studies are needed for using the augmented SHD to improve clinically relevant use cases, such as predictive analytics.
机译:健康的社会决定因素(SDH),例如教育和社会经济地位,与健康和健康结果密切相关。因此,将SDH变量纳入临床数据集可以提高预测分析的准确性,但是个人级别的SDH很少可用,必须从社区级别的数据中推断出来。我们提出了一种方法,可以利用从患者的临床记录和已知的社区级SDH获得的基本人口统计学的联合概率分布。我们使用两个数据集(美国人口普查数据的纽约市(NYC)子集和纽约市健康与营养估计调查(NYCHANES))演示了该方法,并提供了纽约市2个人口普查区的样本结果。这种方法的优势在于,它不会简单地假设人口普查区内的所有居民都享有相同的平均/中位数社会经济地位,而是会认识并利用当地人口统计信息与SDH之间众所周知的关联。结果可以解释SDH大数据文献中出现的一些差异。使用增强的SHD改善临床相关用例(例如预测分析)需要进行进一步的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号