首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Nanoscale Structural and Mechanical Analysis of Bacillus anthracis Spores Inactivated with Rapid Dry Heating
【2h】

Nanoscale Structural and Mechanical Analysis of Bacillus anthracis Spores Inactivated with Rapid Dry Heating

机译:快速干热灭活炭疽芽孢杆菌孢子的纳米尺度结构和力学分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating.
机译:有效杀灭炭疽芽孢杆菌的孢子对于反生物恐怖主义,食品安全,环境保护和医疗器械行业至关重要。因此,为开发新的策略或改进已知的破坏孢子的方法,高度希望对孢子抗性和灭活的机理有更深入的了解。先前的研究表明,孢子的灭活机理取决于杀灭剂,例如加热(湿热,干热),紫外线,电离辐射和化学物质,其差异很大。认为湿热通过使关键酶失活而杀死孢子,而干热通过破坏其DNA杀死孢子。许多研究集中在干热灭活孢子的生化方面。很少有人研究结构破坏和孢子力学性能的变化。在这项研究中,我们通过快速干热灭活了炭疽芽孢杆菌孢子,并使用原子力显微镜(AFM)对灭活孢子进行了纳米尺度的地形和力学分析。我们的研究结果表明,热灭活后,孢子形态和纳米力学性能发生了显着变化。此外,我们还发现,在不同的加热条件下,这些变化是不同的,它们产生相似的失活概率(短时间暴露于高温,长时暴露于低温)。我们将差异归因于孢子中不同的热应力和机械应力。内部热应力和机械应力的积累可能仅在超快的高温热失活中变得突出,这是因为实验时间范围太短,以至于生热蒸汽无法有效地从孢子中逸出。因此,我们的结果提供了直接的,直观的证据,表明通过非常快速的干热,热应力以及热量和质量传递对灭活孢子的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号