首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Homeostasis and Catabolism of Choline and Glycine Betaine: Lessons from Pseudomonas aeruginosa
【2h】

Homeostasis and Catabolism of Choline and Glycine Betaine: Lessons from Pseudomonas aeruginosa

机译:稳态和胆碱和甘氨酸甜菜碱的分解代谢:铜绿假单胞菌的教训

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most sequenced bacteria possess mechanisms to import choline and glycine betaine (GB) into the cytoplasm. The primary role of choline in bacteria appears to be as the precursor to GB, and GB is thought to primarily act as a potent osmoprotectant. Choline and GB may play accessory roles in shaping microbial communities, based on their limited availability and ability to enhance survival under stress conditions. Choline and GB enrichment near eukaryotes suggests a role in the chemical relationships between these two kingdoms, and some of these interactions have been experimentally demonstrated. While many bacteria can convert choline to GB for osmoprotection, a variety of soil- and water-dwelling bacteria have catabolic pathways for the multistep conversion of choline, via GB, to glycine and can thereby use choline and GB as sole sources of carbon and nitrogen. In these choline catabolizers, the GB intermediate represents a metabolic decision point to determine whether GB is catabolized or stored as an osmo- and stress protectant. This minireview focuses on this decision point in Pseudomonas aeruginosa, which aerobically catabolizes choline and can use GB as an osmoprotectant and a nutrient source. P. aeruginosa is an experimentally tractable and ecologically relevant model to study the regulatory pathways controlling choline and GB homeostasis in choline-catabolizing bacteria. The study of P. aeruginosa associations with eukaryotes and other bacteria also makes this a powerful model to study the impact of choline and GB, and their associated regulatory and catabolic pathways, on host-microbe and microbe-microbe relationships.
机译:大多数测序细菌具有将胆碱和甘氨酸甜菜碱(GB)导入细胞质的机制。胆碱在细菌中的主要作用似乎是GB的前体,而GB被认为主要是有效的渗透保护剂。胆碱和GB可能在塑造微生物群落中起辅助作用,因为它们的有限可用性和在压力条件下增强生存能力。真核生物附近的胆碱和GB富集表明这两个王国之间的化学关系中的作用,并且其中的一些相互作用已通过实验证明。尽管许多细菌可以将胆碱转化为GB进行渗透保护,但各种土壤和水生细菌都具有分解代谢途径,可将胆碱通过GB多步转化为甘氨酸,从而可以将胆碱和GB用作碳和氮的唯一来源。在这些胆碱催化剂中,GB中间体代表代谢决定点,以确定GB是否被代谢或作为渗透压和压力保护剂储存。这篇简短的评论重点关注铜绿假单胞菌的这一决策点,该决策点有氧代谢胆碱,可以将GB用作渗透保护剂和营养来源。铜绿假单胞菌是一种在实验上易于处理且在生态上相关的模型,用于研究在胆碱分解代谢细菌中控制胆碱和GB稳态的调节途径。铜绿假单胞菌与真核生物和其他细菌的关联性研究也使该模型成为研究胆碱和GB及其相关调控和分解代谢途径对宿主-微生物和微生物-微生物关系的影响的强大模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号