首页> 美国卫生研究院文献>Stem Cell Reports >Epigenetic Regulation by BAF Complexes Limits Neural Stem Cell Proliferation by Suppressing Wnt Signaling in Late Embryonic Development
【2h】

Epigenetic Regulation by BAF Complexes Limits Neural Stem Cell Proliferation by Suppressing Wnt Signaling in Late Embryonic Development

机译:BAF复合物的表观遗传调控通过抑制晚期胚胎发育中的Wnt信号来限制神经干细胞的增殖。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

class="head no_bottom_margin" id="sec1title">IntroductionDuring vertebrate cerebral cortex development, neural stem cells (NSCs) undergo two types of temporally regulated cell division modes to generate distinct neural cell types. During early corticogenesis in mice (embryonic day 8.5–12.5 [E8.5–E12.5]), NSCs, also called neuroepithelial cells (NEs), mainly divide symmetrically to proliferate and expand their population (, , , , ). At the onset of neurogenesis (E10.5), NEs differentiate into mature NSCs, also termed radial glial progenitors (RGs), which start to express astroglial markers (). This process coincides with the loss and appearance of tight and adherens junctional complexes respectively in the ventricular zone (VZ) (, ). Later, RGs primarily divide asymmetrically to produce an RG to maintain the proliferative pool, and either an excitatory neuron or a basal progenitor. Delayed RG differentiation from NEs causes aberrant neurogenesis (), yet factors that are required to suppress NE fate in late corticogenesis to ensure a balance between NSC proliferation and neuronal differentiation are unknown.The temporal relationship and intricate balance between proliferative symmetric and neurogenic asymmetric divisions in the VZ of the cortex is controlled by diverse signaling pathways. Among these, Wnt/β-catenin signaling has been extensively investigated for its role in proliferative symmetric division (). For example, elevation of Wnt signaling through overexpression of β-catenin massively enhanced cortical NSC proliferation (). Interestingly, a recent study revealed irreversibility of the progression from proliferative to neurogenic division modes, thus implicating a default program in NSCs for division-mode transition during corticogenesis (). As regulators of the spatiotemporal expression of developmental genes, epigenetic and chromatin regulatory mechanisms have been proposed to contribute to establishing the proliferative and differentiation competence of NSCs (, ).To investigate the possible involvement of chromatin-remodeling BAF (mSWI/SNF) complexes in this process, we applied a conditional deletion approach through double-knockout (dcKO) of the BAF155 and BAF170 subunits, which eliminate the entire BAF complex during late cortical neurogenesis in transgenic mice. In the absence of BAF complexes, transcriptional profiling and epigenetic analyses revealed an enrichment of downregulated RG (astroglial, adherens junctions)- and neuronal differentiation-related genes, with both gene groups showing increased H3K27me3 repressive marks. In contrast, upregulated genes with increased H3K4me2 active marks were predominantly involved in the regulation of NE cell fate (e.g., tight junction feature), proliferation, cell cycle, and Wnt signaling-related pathways. The results of this study suggest that BAF complexes exert genome-wide control on both active H3K4me2 and repressive H3K27me3 marks during late cortical development by directly interacting with the corresponding H3 demethylases and regulating their activity. Phenotypically, we found that deletion of BAF complexes during late cortical neurogenesis leads to dysgenesis of the upper cortical layers and the hippocampal formation. These perturbations were rescued by inhibition of Wnt/β-catenin signaling. Together, these observations provide insights into distinct epigenetic regulatory mechanisms mediated by chromatin-remodeling BAF complexes as a key factor that suppresses the proliferative competence of NSCs during late cortical development.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介在脊椎动物大脑皮质发育过程中,神经干细胞(NSC)经历了两种类型的时间调控细胞分裂模式以产生不同的神经细胞类型。在小鼠的早期皮质形成过程中(胚胎第8.5–12.5天[E8.5–E12.5]),NSC(也称为神经上皮细胞(NEs))主要对称分裂,以增殖和扩展其种群(“”,“”,“”)。在神经发生(E10.5)开始时,NE分化为成熟的NSC,也称为放射状神经胶质祖细胞(RGs),开始表达星形胶质标记()。该过程与分别在心室区(VZ)(,)中紧密连接的复合物的丢失和出现相吻合。后来,RGs主要不对称分裂以产生RG来维持增殖池,以及兴奋性神经元或基底祖细胞。 RGs与NEs的延迟分化会引起异常的神经发生(),但尚不清楚抑制晚期皮质生成以确保NSC增殖与神经元分化之间平衡的NE命运所需的因素。增殖对称和神经源性不对称分裂之间的时间关系和复杂平衡皮质的VZ受多种信号通路控制。其中,Wnt /β-catenin信号传导在增殖对称分裂中的作用已被广泛研究。例如,通过过度表达β-catenin升高Wnt信号传导可大大增强皮质NSC的增殖()。有趣的是,最近的一项研究揭示了从增生性分裂模式向神经源性分裂模式发展的不可逆性,从而暗示了在NSC中用于皮质发生过程中分裂模式转变的默认程序()。作为发育基因时空表达的调节者,表观遗传和染色质调节机制已被提议有助于建立NSC的增殖和分化能力(,)。研究染色质重塑BAF(mSWI / SNF)复合体可能参与其中。在此过程中,我们通过双敲除(BAKO155和BAF170亚基)进行了条件剔除,从而消除了转基因小鼠皮质神经发生后期的整个BAF复合物。在没有BAF复合物的情况下,转录谱分析和表观遗传学分析显示,富含下调的RG(星形胶质,黏附连接)和神经元分化相关基因,两个基因组均显示出增加的H3K27me3阻遏标记。相反,具有增加的H3K4me2活性标记的上调基因主要参与NE细胞命运(例如紧密连接特征),增殖,细胞周期和Wnt信号相关通路的调控。这项研究的结果表明,BAF复合物在皮质晚期发育过程中,通过与相应的H3脱甲基酶直接相互作用并调节其活性,对活性H3K4me2和抑制性H3K27me3标记均进行全基因组控制。从表型上看,我们发现在晚期皮质神经发生过程中BAF复合物的缺失导致皮质上层和海马形成的发育不全。通过抑制Wnt /β-catenin信号传导来挽救这些困扰。总之,这些发现为染色质重塑BAF复合物介导的独特表观遗传调控机制提供了见识,而BAF复合物是抑制晚期皮质发育过程中NSC增殖能力的关键因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号