首页> 美国卫生研究院文献>Asian-Australasian Journal of Animal Sciences >Models for Estimating Genetic Parameters of Milk Production Traits Using Random Regression Models in Korean Holstein Cattle
【2h】

Models for Estimating Genetic Parameters of Milk Production Traits Using Random Regression Models in Korean Holstein Cattle

机译:荷斯坦荷斯坦牛使用随机回归模型估算牛奶生产性状遗传参数的模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objectives of the study were to estimate genetic parameters for milk production traits of Holstein cattle using random regression models (RRMs), and to compare the goodness of fit of various RRMs with homogeneous and heterogeneous residual variances. A total of 126,980 test-day milk production records of the first parity Holstein cows between 2007 and 2014 from the Dairy Cattle Improvement Center of National Agricultural Cooperative Federation in South Korea were used. These records included milk yield (MILK), fat yield (FAT), protein yield (PROT), and solids-not-fat yield (SNF). The statistical models included random effects of genetic and permanent environments using Legendre polynomials (LP) of the third to fifth order (L3–L5), fixed effects of herd-test day, year-season at calving, and a fixed regression for the test-day record (third to fifth order). The residual variances in the models were either homogeneous (HOM) or heterogeneous (15 classes, HET15; 60 classes, HET60). A total of nine models (3 orders of polynomials×3 types of residual variance) including L3-HOM, L3-HET15, L3-HET60, L4-HOM, L4-HET15, L4-HET60, L5-HOM, L5-HET15, and L5-HET60 were compared using Akaike information criteria (AIC) and/or Schwarz Bayesian information criteria (BIC) statistics to identify the model(s) of best fit for their respective traits. The lowest BIC value was observed for the models L5-HET15 (MILK; PROT; SNF) and L4-HET15 (FAT), which fit the best. In general, the BIC values of HET15 models for a particular polynomial order was lower than that of the HET60 model in most cases. This implies that the orders of LP and types of residual variances affect the goodness of models. Also, the heterogeneity of residual variances should be considered for the test-day analysis. The heritability estimates of from the best fitted models ranged from 0.08 to 0.15 for MILK, 0.06 to 0.14 for FAT, 0.08 to 0.12 for PROT, and 0.07 to 0.13 for SNF according to days in milk of first lactation. Genetic variances for studied traits tended to decrease during the earlier stages of lactation, which were followed by increases in the middle and decreases further at the end of lactation. With regards to the fitness of the models and the differential genetic parameters across the lactation stages, we could estimate genetic parameters more accurately from RRMs than from lactation models. Therefore, we suggest using RRMs in place of lactation models to make national dairy cattle genetic evaluations for milk production traits in Korea.
机译:该研究的目的是使用随机回归模型(RRM)估算荷斯坦奶牛生产性状的遗传参数,并比较具有均质和异质残留方差的各种RRM的拟合优度。韩国国家农业合作社联合会奶牛改良中心在2007年至2014年之间共使用了126,980个测试日的第一胎奇数荷斯坦奶牛的产奶记录。这些记录包括牛奶产量(MILK),脂肪产量(FAT),蛋白质产量(PROT)和非脂肪固体产量(SNF)。统计模型包括使用三阶到五阶(L3–L5)的勒让德多项式(LP)的遗传和永久环境的随机影响,牛群测试日的固定影响,产犊时的季节和测试的固定回归天记录(三到五阶)。模型中的剩余方差是同质的(HOM)或异质的(15类,HET15; 60类,HET60)。共有9个模型(3个多项式×3种剩余方差类型),包括L3-HOM,L3-HET15,L3-HET60,L4-HOM,L4-HET15,L4-HET60,L5-HOM,L5-HET15,使用Akaike信息标准(AIC)和/或Schwarz Bayesian信息标准(BIC)统计数据对L5-HET60和L5-HET60进行比较,以确定最适合其各自特征的模型。 L5-HET15(MILK; PROT; SNF)和L4-HET15(FAT)模型的最低BIC值最合适。通常,在大多数情况下,特定多项式的HET15模型的BIC值低于HET60模型的BIC值。这意味着LP的阶数和残差的类型会影响模型的优劣。同样,在测试日分析中应考虑残差的异质性。根据第一次哺乳期的天数,最佳拟合模型的遗传力估计值范围从牛奶的0.08至0.15,脂肪的0.06至0.14,PROT的0.08至0.12和SNF的0.07至0.13。所研究性状的遗传方差在泌乳早期阶段趋于减少,其后在中间阶段增加,在哺乳期结束时进一步下降。关于模型的适应性和整个泌乳阶段的差异遗传参数,我们可以比RRMs更准确地估计RRM的遗传参数。因此,我们建议使用RRM代替泌乳模型对韩国的奶牛生产性状进行全国奶牛遗传评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号