class='head no_bottom_margin' id='sec1title'>Int'/> A Human Stem Cell Model of Fabry Disease Implicates LIMP-2 Accumulation in Cardiomyocyte Pathology
首页> 美国卫生研究院文献>Stem Cell Reports >A Human Stem Cell Model of Fabry Disease Implicates LIMP-2 Accumulation in Cardiomyocyte Pathology
【2h】

A Human Stem Cell Model of Fabry Disease Implicates LIMP-2 Accumulation in Cardiomyocyte Pathology

机译:法布里氏病的人类干细胞模型牵连心肌细胞病理中的LIMP-2积累。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionFabry disease (FD) is an inherited lysosomal storage disorder (LSD) caused by mutations in the GLA gene on the X chromosome, leading to the deficiency of α-galactosidase A (α-gal A). FD is rare, but LSDs as a group have an incidence of approximately 1:5,000–1:10,000, and may share overlapping pathological mechanisms (, ). FD is characterized by the progressive intracellular accumulation of globotriaosylceramide (GL-3) throughout the body, particularly in the vascular tree, nervous system, kidney, and heart (). Most patients develop cardiac involvement, with common manifestations including left ventricular hypertrophy, arrhythmias and conduction disturbances (). With disease progression, extensive myocardial fibrosis and impaired left ventricular function can develop, and cardiac disease has become the main cause of mortality in FD (). Enzyme replacement therapy has provided a major therapeutic advance. However, in the heart, clearance of GL-3 from cardiomyocytes (CMs) has not been demonstrated, in contrast to the robust clearance from endothelial cells (, ).A major obstacle for advancing therapy for patients with FD is the knowledge gap between the direct molecular consequences of α-gal A deficiency in CMs and the cascade of events driving disease in the heart; the inaccessibility of CMs from patients precludes adequate investigation of these events, especially at early stages. Whether intrinsic myocardial dysfunction drives disease progression and is a primary cause of the electrophysiological and contractile disturbances remains unclear, but is supported by the following evidence: electrocardiogram abnormalities such as a shorter P wave duration, PR interval, and QRS complex indicate an acceleration in both atrial and ventricular conduction in early-stage FD (), implying that GL-3 accumulation may alter cellular conductive properties; and mechanical defects have been reported in a rare example where patient CMs have been available for in vitro investigation ().Recently, our group reported the generation of induced pluripotent stem cells (iPSCs) from patients with FD carrying non-sense mutations in GLA (). This model presents the possibility, for the first time, to systematically study the consequences of α-gal A deficiency in CMs at the molecular and functional level and to identify new disease biomarkers. Biomarkers could provide valuable direction for mechanistic investigation and help elucidate the pathological cascades in FD; systemic biomarkers could have further utility for monitoring disease status, response to therapy, and for identifying patients at high risk of cardiac complications.Using a carefully standardized iPSC cardiac differentiation model, here we provide quantitative data at proteome scale on the cellular phenotype of CMs carrying GLA mutations (Fabry CMs). We have identified functional differences in these cells that are consistent with clinical data, and discovered several novel cellular and secreted protein biomarkers. The accumulation of LIMP-2, a lysosomal protein with suggested roles in heart disease, was a robust consequence of α-gal A deficiency, and could drive protein secretion, implying a fundamental role in FD pathology. These new data support the exciting potential of this model for delivering translational benefit for patients with FD.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介法布里病(FD)是一种遗传性溶酶体贮积病(LSD),由LDS突变引起X染色体上的GLA基因,导致α-半乳糖苷酶A(α-galA)缺乏。 FD很少见,但LSD作为一个整体的发病率约为1:5,000–1:10,000,并且可能具有重叠的病理机制(,)。 FD的特征是globotriaosylceramide(GL-3)在整个体内,尤其是在血管树,神经系统,肾脏和心脏中逐渐积累的细胞内(GL-3)。大多数患者发展为心脏受累,常见表现包括左心室肥大,心律不齐和传导障碍()。随着疾病的进展,可能会出现广泛的心肌纤维化和左心室功能受损,心脏病已成为FD致死的主要原因。酶替代疗法已提供了重大的治疗进展。然而,在心脏中,与内皮细胞的强清除相比,尚未证明GL-3可从心肌细胞(CM)清除(,)。FD患者推进治疗的主要障碍是两者之间的知识差距。 CM中α-galA缺乏症的直接分子后果以及导致心脏疾病的一系列事件;由于患者无法获得CM,因此无法对这些事件进行充分的调查,尤其是在早期阶段。尚不清楚内在的心肌功能障碍是否是疾病进展的驱动因素,并且是电生理和收缩性疾病的主要原因,但尚有以下证据支持:心电图异常,例如较短的P波持续时间,PR间隔和QRS复杂度表明两者均加速FD()早期的心房和心室传导,暗示GL-3的积累可能会改变细胞的传导特性;在一个罕见的例子中,已经报道了机械缺陷和机械缺陷,其中患者CM可用于体外研究()。最近,我们的研究小组报道了FD患者携带GLA中无义突变的诱导多能干细胞(iPSC)的产生( )。该模型首次提供了在分子和功能水平上系统研究CM中α-galA缺乏的后果并鉴定新疾病生物标志物的可能性。生物标志物可为机制研究提供有价值的指导,并有助于阐明FD中的病理级联。全身性生物标志物可进一步用于监测疾病状态,对治疗的反应以及鉴定有心脏并发症高风险的患者。使用精心标准化的iPSC心脏分化模型,此处我们提供蛋白质组学规模的定量数据,分析携带细胞的CMs表型GLA突变(法布里CM)。我们已经鉴定出这些细胞中与临床数据一致的功能差异,并发现了几种新颖的细胞和分泌蛋白生物标志物。 LIMP-2是一种溶酶体蛋白,在心脏病中具有潜在作用,其积累是α-galA缺乏的有力后果,并可能驱动蛋白分泌,这暗示了FD病理学的基本作用。这些新数据支持该模型为FD患者带来翻译益处的令人兴奋的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号