首页> 美国卫生研究院文献>Stem Cell Reports >MIF Plays a Key Role in Regulating Tissue-Specific Chondro-Osteogenic Differentiation Fate of Human Cartilage Endplate Stem Cells under Hypoxia
【2h】

MIF Plays a Key Role in Regulating Tissue-Specific Chondro-Osteogenic Differentiation Fate of Human Cartilage Endplate Stem Cells under Hypoxia

机译:MIF在缺氧条件下调节人软骨终板干细胞组织特异性软骨成骨分化命运中起关键作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionDegenerative disc disease (DDD) is considered to be the most important cause of low back pain (LBP), which is one of the most common reasons for activity limitation (). Many pathological factors account for DDD, such as cell senescence, inflammatory factors, and extracellular matrix degradation (, , ). A declining metabolic exchange due to the accumulation of waste products and nutrition insufficiency appears to be the most important of these mechanisms (). The intervertebral disc (IVD) is the largest avascular organ in the human body, and the metabolic exchange is predominantly reliant on the diffusion effect across cartilage endplate (CEP) in the mature IVD (). The CEP is a thin horizontal layer of hyaline cartilage that separates the IVD from the vertebral body. Blood vessels in the adjacent vertebral bones do not reach the inner component of the discs but end at the interface between IVD and the vertebrae (). Because it is the most important metabolic exchange channel, many studies assert that the degeneration of CEP may initiate DDD ().Chondrification characteristics are considered to be critical in the physiological function of CEP. Changes in the cartilaginous biochemical content of CEP are closely related to IVD degeneration. The matrix of CEP is primarily composed of collagen type II, which is not only necessary for cartilage to resist compressive forces but is also instrumental in the transport properties of CEP. In addition, CEP ossification reduces the solute transport, which finally leads to DDD (). However, the mechanisms responsible for the loss of chondrification and the onset of ossification remain unclear.Recent studies by our group demonstrated the presence of stem cells in the CEP. These cartilage endplate stem cells (CESCs) exhibited superior capacity for chondrogenic and osteogenic differentiation to those of bone marrow mesenchymal stem cells (BM-MSCs) (). This differentiation property attracted our attention because it is likely that CESCs play an important role in the restoration and regeneration of CEP, and the direction of chondrogenesis and osteogenesis in CESCs may be responsible for CEP chondrification and ossification.As an avascular tissue, IVD remains in a hypoxic microenvironment (), and the oxygen tension within CEP is as low as 1% (). Hypoxia greatly affects the chondrogenesis and osteogenesis of MSCs (), which indicates that physiological hypoxia may regulate the chondro-osteogenic differentiation of CESCs to maintain a balance of chondrification and ossification in CEP.The hypoxia-inducible factor-1α subunit/macrophage migration inhibitory factor (HIF1A/MIF) pathway is one of the most important signaling pathways in response to hypoxia. HIF1A is a key cellular regulator in responding to hypoxia; MIF, which has been recognized as a downstream target of HIF1A, acts as a regulator of innate immunity and can regulate many biological activities (, ). MIF is highly involved in cartilage metabolism. MIF knockdown in zebrafish embryos can lead to undeveloped jaw cartilage (href="#bib19" rid="bib19" class=" bibr popnode">Ito et al., 2008). Moreover, MIF was observed to be involved in the degenerative process of CEP (href="#bib56" rid="bib56" class=" bibr popnode">Xiong et al., 2014). In mouse neural progenitor cells, MIF promoted survival and maintenance by upregulating the expression of SOX6, which is also a member of the SOX family and is co-expressed with SOX9 in all chondroprogenitors, indicating that MIF may initiate chondrogenesis in progenitor cells (href="#bib34" rid="bib34" class=" bibr popnode">Ohta et al., 2013). In addition, MIF was also involved in bone metabolism (href="#bib35" rid="bib35" class=" bibr popnode">Onodera et al., 2002). Transgenic mice overexpressing MIF exhibited osteoporosis, implying that the overexpression of MIF may lead to poor osteogenesis capability (href="#bib36" rid="bib36" class=" bibr popnode">Onodera et al., 2006). Obviously, the cartilage and bone metabolism was closely related to the chondrogenic and osteogenic differentiation of stem cells; however, the impact of the HIF1A/MIF pathway upon chondro-osteogenic differentiation is rarely reported. The transcription factor SOX9 is the master regulator of chondrogenesis and is expressed in pre-chondrocytes and differentiated chondrocytes during skeletal development (href="#bib16" rid="bib16" class=" bibr popnode">Healy et al., 1996). The transcription factor RUNX2 acts as the master regulator of skeletogenesis; its expression is necessary for osteoblast differentiation and maturation (href="#bib10" rid="bib10" class=" bibr popnode">Ducy et al., 1997). In this study, we investigated how the HIF1A/MIF pathway regulated SOX9 and RUNX2, which resulted in a change in the chondro-osteogenic differentiation fate of CESCs.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介椎间盘退变性疾病(DDD)被认为是下腰痛的最重要原因(LBP),这是活动受限()的最常见原因之一。 DDD包括许多病理因素,例如细胞衰老,炎性因子和细胞外基质降解(,,)。在这些机制中,最重要的是由于废物积聚和营养不足而导致的代谢交换下降。椎间盘(IVD)是人体内最大的无血管器官,并且代谢交换主要取决于成熟IVD中跨软骨终板(CEP)的扩散作用。 CEP是透明软骨膜水平层,可将IVD与椎体分开。相邻椎骨中的血管未到达椎间盘的内部组件,而是在IVD与椎骨之间的界面处终止。由于它是最重要的代谢交换通道,因此许多研究断言CEP的变性可能引发DDD()。乙酰化特性被认为对CEP的生理功能至关重要。 CEP软骨生化含量的变化与IVD变性密切相关。 CEP的基质主要由II型胶原组成,这不仅是软骨抵抗压缩力所必需的,而且对CEP的运输特性也有帮助。此外,CEP的骨化作用降低了溶质的转运,最终导致DDD()。然而,导致软骨丧失和骨化开始的机制仍不清楚。我们小组最近的研究表明,CEP中存在干细胞。这些软骨终板干细胞(CESC)的软骨形成和成骨分化能力优于骨髓间充质干细胞(BM-MSC)()。这种分化特性引起了我们的注意,因为CESC可能在CEP的恢复和再生中起着重要的作用,并且CESC的软骨形成和成骨的方向可能是CEP软骨化和骨化的原因。缺氧的微环境(),而CEP中的氧气张力低至1%()。缺氧极大地影响了MSCs的软骨形成和成骨,表明生理性缺氧可能调节CESC的软骨成骨分化,从而维持CEP的软骨化和骨化平衡。低氧诱导因子-1α亚基/巨噬细胞迁移抑制因子(HIF1A / MIF)途径是响应缺氧最重要的信号途径之一。 HIF1A是应对缺氧的关键细胞调节因子。 MIF,已被公认是HIF1A的下游靶标,可作为先天免疫的调节剂,并可以调节许多生物学活性(,)。 MIF高度参与软骨代谢。斑马鱼胚胎中的MIF敲低可能导致颚软骨未发育(href="#bib19" rid="bib19" class=" bibr popnode"> Ito等人,2008 )。此外,据观察到MIF参与了CEP的退化过程(href="#bib56" rid="bib56" class=" bibr popnode"> Xiong等,2014 )。在小鼠神经祖细胞中,MIF通过上调SOX6的表达来促进存活和维持,SOX6也是SOX家族的成员,并且在所有软骨祖细胞中均与SOX9共表达,表明MIF可能启动祖细胞的软骨形成(href =“#bib34” rid =“ bib34” class =“ bibr popnode”> Ohta等人,2013 )。此外,MIF还参与了骨代谢(href="#bib35" rid="bib35" class=" bibr popnode"> Onodera et al。,2002 )。过度表达MIF的转基因小鼠表现出骨质疏松症,这表明MIF的过度表达可能导致成骨能力差(href="#bib36" rid="bib36" class=" bibr popnode"> Onodera等,2006 )。显然,软骨和骨代谢与干细胞的软骨形成和成骨分化密切相关。但是,很少报道HIF1A / MIF途径对软骨成骨分化的影响。转录因子SOX9是软骨形成的主要调节因子,在骨骼发育过程中在软骨前细胞和分化的软骨细胞中表达(href="#bib16" rid="bib16" class=" bibr popnode"> Healy等,1996) )。转录因子RUNX2充当骨骼生成的主要调控因子。其表达对于成骨细胞的分化和成熟是必需的(href="#bib10" rid="bib10" class=" bibr popnode"> Ducy等。,1997 )。在这项研究中,我们调查了HIF1A / MIF途径如何调节SOX9和RUNX2,从而导致CESC的软骨成骨分化命运发生了变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号