class='head no_bottom_margin' id='sec1title'>Int'/> ESC-Derived BDNF-Overexpressing Neural Progenitors Differentially Promote Recovery in Huntingtons Disease Models by Enhanced Striatal Differentiation
首页> 美国卫生研究院文献>Stem Cell Reports >ESC-Derived BDNF-Overexpressing Neural Progenitors Differentially Promote Recovery in Huntingtons Disease Models by Enhanced Striatal Differentiation
【2h】

ESC-Derived BDNF-Overexpressing Neural Progenitors Differentially Promote Recovery in Huntingtons Disease Models by Enhanced Striatal Differentiation

机译:ESC衍生的BDNF过表达的神经祖细胞通过增强的纹状体分化差异地促进亨廷顿病模型的恢复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe neurodegenerative disease Huntington's disease (HD) is characterized by dramatic motor dysfunction, cognitive decline, and psychiatric symptoms, which lead to progressive dementia and death approximately 15–20 years after onset (). HD is an autosomal dominant inheritable disease, caused by mutations in the huntingtin (HTT) gene, leading to an increased number of polyglutamine repeats in the encoded protein (). How mutant HTT protein causes neuronal dysfunction and neurodegeneration has not yet been understood in detail, and besides the existence of some symptomatic treatments, so far there is no causal therapy available for patients. Numerous laboratories showed that in a large number of HD mouse models BDNF or BDNF/TRKB signaling is strongly reduced due to a mutant htt-mediated mechanism (, ). Besides causing changes in vesicular transport of BDNF (), mutant HTT has been described to cause transcriptional downregulation of the BDNF gene through translocation of RE1 silencing transcription factor to the nucleus (). In addition to HD mouse models, a systematic and quantitative assessment of BDNF levels in human cerebral cortex samples, examined post mortem, confirmed that the production of this neurotrophin was impaired in the brains of HD patients (). As striatal medium spiny neurons (MSNs) depend on BDNF activity, a number of studies attempted striatal neuroprotection by providing exogenous BDNF delivered to the diseased rodent striatum either by adenoassociated viral transfer or by transplantation of diverse genetically modified cell types (e.g., fibroblasts) (, ). Altogether these studies showed enhanced neuroprotection, but no or only mild effects on long-term functional improvement in HD rodent models. On the other hand, cell transplantation as a promising therapeutic strategy, which aims to replace striatal neurons, has yielded some preliminary, but only modest and short-lived clinical benefits when using fetal neural cells (, ). Therefore, specifically embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are considered to be an appropriate cell source, as ESCs can be differentiated in vitro into an MSN-like phenotype (, , , ). However, their long-term survival, long-term functional improvement, and safety in vivo still need to be proved.In the present study, we aimed to establish a combination therapy approach composed of cellular replacement by ESC-derived neural progenitors linked to BDNF supply. For this reason, we have generated BDNF-overexpressing mouse ESCs by knockin technology that display an enhanced neuronal and GABAergic differentiation in vitro (href="#bib23" rid="bib23" class=" bibr popnode">Leschik et al., 2013). Very recently, we were able to show that polysialylated neuronal cell adhesion molecule (PSA-NCAM)-positive progenitors derived from these ESCs lead to functional improvement when transplanted into mice with contusion spinal cord injury (href="#bib6" rid="bib6" class=" bibr popnode">Butenschön et al., 2016). With small modifications to the published protocol, which comprises magnetic-activated cell sorting (MACS) technology for purification, we tested in this study the efficiency and safety in three divergent HD mouse models. At present, a variety of different HD mouse models exist, chemically or genetically induced, which match with some aspects of HD. However, until now none of them perfectly recapitulates human neuropathological hallmarks as well as progressive cognitive and motor impairments. So far, genetic HD mouse models have been used only in a few cell transplantation studies. In most cases, cell transplantation was performed in toxin-lesioned mice, in which vast neurodegeneration occurs. This is clearly an advantage over genetic mouse models, which harbor less neurotoxicity. In contrast, genetic accuracy is missing in toxin-induced lesions and it is therefore questionable whether this represents an appropriate model system to test therapeutics for human pathology. For this reason, we decided to use besides the toxin-lesioned model with quinolinic acid (QA) the two widely used transgenic mouse lines R6/2 and N171-82Q, which differ in their extent of pathological features and degree of impairment (href="#bib28" rid="bib28" class=" bibr popnode">Ramaswamy et al., 2007). Typical behavioral assays for each HD mouse model were chosen based on previous publications. We also included the automated gait analysis system CatWalk as a very sensitive method for measuring subtle changes in motor behavior. Here, we show that the CatWalk assay is a valid method to address motor behavior in the QA-lesion and N171-82Q mouse models. Cell transplantation with purified BDNF-expressing neural progenitors revealed an improved motor function in QA-lesioned mice, whereas only subtle effects on motor behavior were detected in both transgenic mouse lines. Therapeutic effects of BDNF-expressing progenitors in the QA model could be attributed to enhanced neuronal and striatal in vivo differentiation compared with control cells. Furthermore, tumor formation was completely absent, in contrast to other studies (href="#bib1" rid="bib1" class=" bibr popnode">Aubry et al., 2008).
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介神经退行性疾病亨廷顿病(HD)的特征是剧烈的运动功能障碍,认知能力下降,和精神症状,在发病后约15-20年会导致进行性痴呆和死亡()。 HD是由亨廷顿(HTT)基因突变引起的常染色体显性遗传性疾病,导致编码蛋白中多谷氨酰胺重复次数增加。尚未详细了解突变型HTT蛋白如何导致神经元功能障碍和神经退行性变,除了存在一些对症治疗外,迄今为止尚无可用于患者的因果疗法。许多实验室表明,在大量的HD小鼠模型中,由于突变型htt介导的机制,BDNF或BDNF / TRKB信号转导大大降低了。除了引起BDNF的囊泡转运变化外,还描述了突变体HTT通过RE1沉默转录因子向核内的易位引起BDNF基因的转录下调。除HD小鼠模型外,在验尸后对人大脑皮层样本中BDNF水平进行系统和定量评估,证实了HD患者大脑中这种神经营养蛋白的产生受到了损害()。由于纹状体中棘神经元(MSN)依赖于BDNF活性,因此许多研究试图通过腺相关病毒转移或通过多种遗传修饰的细胞类型(例如成纤维细胞)的移植,将外源性BDNF提供给患病的啮齿类动物纹状体来保护纹状体神经( ,)。这些研究总共显示出增强的神经保护作用,但对HD啮齿动物模型的长期功能改善没有影响或仅有轻微影响。另一方面,细胞移植作为一种有希望的治疗策略,旨在替代纹状体神经元,在使用胎儿神经细胞时,已经产生了一些初步的但短暂且短暂的临床益处。因此,特定的胚胎干细胞(ESC)和诱导性多能干细胞(iPSC)被认为是合适的细胞来源,因为ESC可以在体外分化为MSN样表型(````)。然而,它们的长期生存,长期功能改善和在体内的安全性尚待证明。在本研究中,我们旨在建立一种由BDNF相关的ESC衍生神经祖细胞替代细胞组成的联合治疗方法。供应。因此,我们已经通过敲入技术产生了BDNF过表达的小鼠胚胎干细胞,该小鼠胚胎干细胞在体外表现出增强的神经元和GABA能分化(href="#bib23" rid="bib23" class=" bibr popnode"> Leschik等。 ,2013 )。最近,我们能够证明,源自这些ESC的多唾液酸化神经元细胞粘附分子(PSA-NCAM)阳性祖细胞移植到患有挫伤性脊髓损伤的小鼠中后会导致功能改善(href =“#bib6” rid = “ bib6” class =“ bibr popnode”>Butenschön等人,2016 )。通过对已发布协议(包括用于纯化的磁激活细胞分选(MACS)技术)的较小修改,我们在本研究中测试了三种不同的HD鼠标模型的效率和安全性。当前,存在化学或遗传诱导的多种不同的HD小鼠模型,其与HD的某些方面匹配。然而,到目前为止,它们都没有完美地概括出人类神经病理学特征以及进行性认知和运动障碍。迄今为止,遗传高清小鼠模型仅用于少数细胞移植研究中。在大多数情况下,细胞移植是在毒素受损的小鼠中进行的,其中发生大量的神经变性。这显然优于具有较小神经毒性的遗传小鼠模型。相比之下,毒素引起的病变中缺乏遗传准确性,因此,是否代表一种合适的模型系统来测试人类病理学治疗方法值得怀疑。因此,我们决定除了使用喹啉酸(QA)破坏毒素的模型外,还使用两种广泛使用的转基因小鼠品系R6 / 2和N171-82Q,它们的病理特征和损伤程度不同(href =“#bib28” rid =“ bib28” class =“ bibr popnode”>拉马斯瓦米等人,2007 )。根据以前的出版物,为每种HD小鼠模型选择典型的行为分析。我们还包括自动步态分析系统CatWalk,这是一种用于测量运动行为细微变化的非常灵敏的方法。这里,我们证明CatWalk分析是解决QA病变和N171-82Q小鼠模型中运动行为的有效方法。用纯化的表达BDNF的神经祖细胞进行细胞移植后,QA损伤小鼠的运动功能得到改善,而在两种转基因小鼠品系中仅检测到对运动行为的微妙影响。在QA模型中表达BDNF的祖细胞的治疗效果可能归因于与对照细胞相比神经元和纹状体在体内分化中的增强。此外,与其他研究相反(href="#bib1" rid="bib1" class=" bibr popnode"> Aubry et al。,2008 ),肿瘤的形成是完全不存在的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号