首页> 美国卫生研究院文献>The Journal of Neuroscience >Target-Specific IPSC Kinetics Promote Temporal Processing in Auditory Parallel Pathways
【2h】

Target-Specific IPSC Kinetics Promote Temporal Processing in Auditory Parallel Pathways

机译:特定于目标的IPSC动力学促进听觉并行路径中的时间处理。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The acoustic environment contains biologically relevant information on timescales from microseconds to tens of seconds. The auditory brainstem nuclei process this temporal information through parallel pathways that originate in the cochlear nucleus from different classes of cells. Although the roles of ion channels and excitatory synapses in temporal processing have been well studied, the contribution of inhibition is less well understood. Here, we show in CBA/CaJ mice that the two major projection neurons of the ventral cochlear nucleus, the bushy and T-stellate cells, receive glycinergic inhibition with different synaptic conductance time courses. Bushy cells, which provide precisely timed spike trains used in sound localization and pitch identification, receive slow inhibitory inputs. In contrast, T-stellate cells, which encode slower envelope information, receive inhibition that is eightfold faster. Both types of inhibition improved the precision of spike timing but engage different cellular mechanisms and operate on different timescales. Computer models reveal that slow IPSCs in bushy cells can improve spike timing on the scale of tens of microseconds. Although fast and slow IPSCs in T-stellate cells improve spike timing on the scale of milliseconds, only fast IPSCs can enhance the detection of narrowband acoustic signals in a complex background. Our results suggest that target-specific IPSC kinetics are critical for the segregated parallel processing of temporal information from the sensory environment.
机译:声音环境包含从微秒到数十秒的时间尺度的生物学相关信息。听觉脑干核通过来自不同类别细胞的耳蜗核的平行途径处理该时间信息。尽管已经很好地研究了离子通道和兴奋性突触在时间过程中的作用,但对抑制作用的了解却很少。在这里,我们在CBA / CaJ小鼠中显示了腹侧耳蜗核的两个主要投射神经元,即丛生和T星状细胞,在不同突触传导时间过程中均受到了糖氨酸抑制作用。提供用于声音定位和音高识别的精确定时的尖峰序列的浓密细胞接收缓慢的抑制输入。相反,编码较慢的包膜信息的T星状细胞受到的抑制则快八倍。两种类型的抑制都提高了尖峰定时的精度,但参与了不同的细胞机制并在不同的时间尺度上运行。计算机模型表明,丛状细胞中的慢速IPSC可以在数十微秒的范围内改善峰值定时。尽管T星状小区中的快速IPSC和慢速IPSC可以改善毫秒级的尖峰定时,但只有快速IPSC才能增强复杂背景下窄带声信号的检测。我们的结果表明,目标特定的IPSC动力学对于从感官环境中分离时间信息的并行处理至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号