首页> 美国卫生研究院文献>Beilstein Journal of Nanotechnology >Influence of dielectric layer thickness and roughness on topographic effects in magnetic force microscopy
【2h】

Influence of dielectric layer thickness and roughness on topographic effects in magnetic force microscopy

机译:介电层厚度和粗糙度对磁力显微镜中形貌效应的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Magnetic force microscopy (MFM) has become a widely used tool for the characterization of magnetic properties. However, the magnetic signal can be overlapped by additional forces acting on the tip such as electrostatic forces. In this work the possibility to reduce capacitive coupling effects between tip and substrate is discussed in relation to the thickness of a dielectric layer introduced in the system. Single superparamagnetic iron oxide nanoparticles (SPIONs) are used as a model system, because their magnetic signal is contrariwise to the signal due to capacitive coupling so that it is possible to distinguish between magnetic and electric force contributions. Introducing a dielectric layer between substrate and nanoparticle the capacitive coupling can be tuned and minimized for thick layers. Using the theory of capacitive coupling and the magnetic point dipole–dipole model we could theoretically explain and experimentally prove the phase signal for single superparamagnetic nanoparticles as a function of the layer thickness of the dielectric layer. Tuning the capacitive coupling by variation of the dielectric layer thickness between nanoparticle and substrate allows the distinction between the electric and the magnetic contributions to the MFM signal. The theory also predicts decreasing topographic effects in MFM signals due to surface roughness of dielectric films with increasing film thickness.
机译:磁力显微镜(MFM)已成为表征磁性的一种广泛使用的工具。但是,磁信号可能会被作用在尖端上的其他力(例如静电力)重叠。在这项工作中,关于在系统中引入的介电层的厚度,讨论了减小尖端与基底之间的电容耦合效应的可能性。单个超顺磁性氧化铁纳米颗粒(SPIONs)被用作模型系统,因为它们的磁信号与由于电容耦合产生的信号相反,因此可以区分磁力和电能。在衬底和纳米颗粒之间引入介电层,可以对电容耦合进行调整并最小化厚层。使用电容耦合理论和磁点偶极子-偶极子模型,我们可以从理论上解释和实验证明单个超顺磁性纳米粒子的相位信号是介电层厚度的函数。通过改变纳米颗粒和基板之间的介电层厚度来调整电容性耦合,可以区分对MFM信号的电和磁影响。该理论还预测,由于电介质膜的表面粗糙度随膜厚的增加,MFM信号中的形貌效应会降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号