首页> 美国卫生研究院文献>Bioengineering >Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness
【2h】

Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness

机译:哺乳动物补料分批细胞培养物中的代谢控制可减少乳酸积累并提高工艺鲁棒性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biomass and cell-specific metabolic rates usually change dynamically over time, making the “feed according to need” strategy difficult to realize in a commercial fed-batch process. We here demonstrate a novel feeding strategy which is designed to hold a particular metabolic state in a fed-batch process by adaptive feeding in real time. The feed rate is calculated with a transferable biomass model based on capacitance, which changes the nutrient flow stoichiometrically in real time. A limited glucose environment was used to confine the cell in a particular metabolic state. In order to cope with uncertainty, two strategies were tested to change the adaptive feed rate and prevent starvation while in limitation: (i) inline pH and online glucose concentration measurement or (ii) inline pH alone, which was shown to be sufficient for the problem statement. In this contribution, we achieved metabolic control within a defined target range. The direct benefit was two-fold: the lactic acid profile was improved and pH could be kept stable. Multivariate Data Analysis (MVDA) has shown that pH influenced lactic acid production or consumption in historical data sets. We demonstrate that a low pH (around 6.8) is not required for our strategy, as glucose availability is already limiting the flux. On the contrary, we boosted glycolytic flux in glucose limitation by setting the pH to 7.4. This new approach led to a yield of lactic acid/glucose (Y L/G) around zero for the whole process time and high titers in our labs. We hypothesize that a higher carbon flux, resulting from a higher pH, may lead to more cells which produce more product. The relevance of this work aims at feeding mammalian cell cultures safely in limitation with a desired metabolic flux range. This resulted in extremely stable, low glucose levels, very robust pH profiles without acid/base interventions and a metabolic state in which lactic acid was consumed instead of being produced from day 1. With this contribution, we wish to extend the basic repertoire of available process control strategies, which will open up new avenues in automation technology and radically improve process robustness in both process development and manufacturing.
机译:生物量和特定于细胞的代谢率通常会随时间动态变化,从而使得“按需补料”策略很难在商业化的分批补料过程中实现。我们在这里演示了一种新颖的进食策略,该策略旨在通过实时自适应进食在分批进料过程中保持特定的代谢状态。使用基于电容的可转移生物量模型来计算进料速度,这可以实时化学计量地改变营养流量。使用有限的葡萄糖环境将细胞限制在特定的代谢状态。为了应对不确定性,在限制条件下,测试了两种策略来更改自适应进料速度并防止饥饿:(i)在线pH和在线葡萄糖浓度测量或(ii)在线pH,这足以满足要求。问题陈述。在这项贡献中,我们实现了在规定目标范围内的代谢控制。直接的好处是双重的:改善了乳酸分布,可以保持pH值稳定。多元数据分析(MVDA)表明,历史数据集中的pH值影响乳酸的生产或消耗。我们证明了我们的策略不需要低pH(约6.8),因为葡萄糖的可用性已经限制了通量。相反,我们通过将pH设置为7.4来提高葡萄糖限制中的糖酵解通量。这种新方法使整个过程的乳酸/葡萄糖(Y L / G)产量约为零,在我们的实验室中滴度很高。我们假设较高的pH值导致较高的碳通量可能导致更多的细胞产生更多的产物。这项工作的相关性旨在限制在所需的代谢通量范围内安全地喂养哺乳动物细胞培养物。这导致极其稳定,低葡萄糖水平,非常强健的pH值曲线,而无酸/碱干预,并且代谢状态是从第1天开始消耗而不是消耗乳酸。借助这一贡献,我们希望扩展现有的基本储备过程控制策略,这将为自动化技术开辟新途径,并从根本上改善过程开发和制造过程中的过程鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号