首页> 美国卫生研究院文献>Biomedical Optics Express >Deep longitudinal transfer learning-based automatic segmentation of photoreceptor ellipsoid zone defects on optical coherence tomography images of macular telangiectasia type 2
【2h】

Deep longitudinal transfer learning-based automatic segmentation of photoreceptor ellipsoid zone defects on optical coherence tomography images of macular telangiectasia type 2

机译:基于深度纵向转移学习的黄斑性毛细血管扩张2型光学相干断层扫描图像上的感光体椭球区域缺陷的自动分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Photoreceptor ellipsoid zone (EZ) defects visible on optical coherence tomography (OCT) are important imaging biomarkers for the onset and progression of macular diseases. As such, accurate quantification of EZ defects is paramount to monitor disease progression and treatment efficacy over time. We developed and trained a novel deep learning-based method called Deep OCT Atrophy Detection (DOCTAD) to automatically segment EZ defect areas by classifying 3-dimensional A-scan clusters as normal or defective. Furthermore, we introduce a longitudinal transfer learning paradigm in which the algorithm learns from segmentation errors on images obtained at one time point to segment subsequent images with higher accuracy. We evaluated the performance of this method on 134 eyes of 67 subjects enrolled in a clinical trial of a novel macular telangiectasia type 2 (MacTel2) therapeutic agent. Our method compared favorably to other deep learning-based and non-deep learning-based methods in matching expert manual segmentations. To the best of our knowledge, this is the first automatic segmentation method developed for EZ defects on OCT images of MacTel2.
机译:在光学相干断层扫描(OCT)上可见的感光体椭球区(EZ)缺陷是黄斑疾病发作和发展的重要成像生物标记。因此,准确定量EZ缺陷对于监控疾病随时间的进展和治疗效果至关重要。我们开发并培训了一种新颖的基于深度学习的方法,称为“深度OCT萎缩检测(DOCTAD)”,通过将3维A扫描簇分类为正常或缺陷,可以自动分割EZ缺陷区域。此外,我们介绍了一种纵向转移学习范例,该算法从一个时间点上获得的图像分割错误中学习,从而以更高的精度对后续图像进行分割。我们评估了这种方法对67名受试者的134只眼的性能,该受试者参加了一种新型2型黄斑毛细血管扩张(MacTel2)治疗剂的临床试验。在匹配专家手册细分方面,我们的方法优于其他基于深度学习和基于非深度学习的方法。据我们所知,这是针对MacTel2的OCT图像上的EZ缺陷开发的第一种自动分割方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号