首页> 美国卫生研究院文献>Biophysical Journal >Mesoscopic Adaptive Resolution Scheme toward Understanding of Interactions between Sickle Cell Fibers
【2h】

Mesoscopic Adaptive Resolution Scheme toward Understanding of Interactions between Sickle Cell Fibers

机译:介观自适应解决方案以了解镰状细胞纤维之间的相互作用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding of intracellular polymerization of sickle hemoglobin (HbS) and subsequent interaction with the membrane of a red blood cell (RBC) is important to predict the altered morphologies and mechanical properties of sickle RBCs in sickle cell anemia. However, modeling the integrated processes of HbS nucleation, polymerization, HbS fiber interaction, and subsequent distortion of RBCs is challenging as they occur at multispatial scales, ranging from nanometers to micrometers. To make progress toward simulating the integrated processes, we propose a hybrid HbS fiber model, which couples fine-grained and coarse-grained HbS fiber models through a mesoscopic adaptive resolution scheme (MARS). To this end, we apply a microscopic model to capture the dynamic process of polymerization of HbS fibers, while maintaining the mechanical properties of polymerized HbS fibers by the mesoscopic model, thus providing a means of bridging the subcellular and cellular phenomena in sickle cell disease. At the subcellular level, this model can simulate HbS polymerization with preexisting HbS nuclei. At the cellular level, if combined with RBC models, the generated HbS fibers could be applied to study the morphologies and membrane stiffening of sickle RBCs. One important feature of the MARS is that it can be easily employed in other particle-based multiscale simulations where a dynamic coarse-graining and force-blending method is required. As demonstrations, we first apply the hybrid HbS fiber model to simulate the interactions of two growing fibers and find that their final configurations depend on the orientation and interaction distance between two fibers, in good agreement with experimental observations. We also model the formation of fiber bundles and domains so that we explore the mechanism that causes fiber branching.
机译:了解镰状血红蛋白(HbS)的细胞内聚合以及随后与红细胞膜(RBC)的相互作用对于预测镰状红细胞贫血中镰状RBC的形态和力学性能发生变化至关重要。但是,对HbS成核,聚合,HbS纤维相互作用以及随后的RBC变形的集成过程进行建模是具有挑战性的,因为它们发生在从纳米到微米的多空间尺度上。为了在模拟集成过程方面取得进展,我们提出了一种混合HbS光纤模型,该模型通过介观自适应分辨率方案(MARS)将细粒度和粗粒度HbS光纤模型耦合在一起。为此,我们应用微观模型来捕获HbS纤维聚合的动态过程,同时通过介观模型保持聚合的HbS纤维的机械性能,从而为弥合镰状细胞病中的亚细胞和细胞现象提供了一种手段。在亚细胞水平上,此模型可以模拟具有预先存在的HbS核的HbS聚合。在细胞水平上,如果与RBC模型结合使用,生成的HbS纤维可用于研究镰刀型RBC的形态和膜硬化。 MARS的一个重要特征是,它可轻松用于需要动态粗粒度和力混合方法的其他基于粒子的多尺度模拟中。作为演示,我们首先应用混合HbS纤维模型来模拟两条生长纤维的相互作用,发现它们的最终构型取决于两条纤维之间的取向和相互作用距离,与实验观察结果非常吻合。我们还对纤维束和畴的形成进行建模,以便我们探讨引起纤维分支的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号