首页> 美国卫生研究院文献>Biophysical Journal >Bayesian Inference of Initial Models in Cryo-Electron Microscopy Using Pseudo-atoms
【2h】

Bayesian Inference of Initial Models in Cryo-Electron Microscopy Using Pseudo-atoms

机译:利用伪原子的低温电子显微镜初始模型的贝叶斯推断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Single-particle cryo-electron microscopy is widely used to study the structure of macromolecular assemblies. Tens of thousands of noisy two-dimensional images of the macromolecular assembly viewed from different directions are used to infer its three-dimensional structure. The first step is to estimate a low-resolution initial model and initial image orientations. This is a challenging global optimization problem with many unknowns, including an unknown orientation for each two-dimensional image. Obtaining a good initial model is crucial for the success of the subsequent refinement step. We introduce a probabilistic algorithm for estimating an initial model. The algorithm is fast, has very few algorithmic parameters, and yields information about the precision of estimated model parameters in addition to the parameters themselves. Our algorithm uses a pseudo-atomic model to represent the low-resolution three-dimensional structure, with isotropic Gaussian components as moveable pseudo-atoms. This leads to a significant reduction in the number of parameters needed to represent the three-dimensional structure, and a simplified way of computing two-dimensional projections. It also contributes to the speed of the algorithm. We combine the estimation of the unknown three-dimensional structure and image orientations in a Bayesian framework. This ensures that there are very few parameters to set, and specifies how to combine different types of prior information about the structure with the given data in a systematic way. To estimate the model parameters we use Markov chain Monte Carlo sampling. The advantage is that instead of just obtaining point estimates of model parameters, we obtain an ensemble of models revealing the precision of the estimated parameters. We demonstrate the algorithm on both simulated and real data.
机译:单粒子低温电子显微镜被广泛用于研究大分子组装体的结构。从不同方向观看的成千上万个嘈杂的二维二维图像用于推断其三维结构。第一步是估计低分辨率的初始模型和初始图像方向。这是一个充满挑战的全局优化问题,存在许多未知数,其中包括每个二维图像的未知方向。获得良好的初始模型对于后续精炼步骤的成功至关重要。我们介绍了一种用于估计初始模型的概率算法。该算法速度快,算法参数很少,除参数本身外,还提供有关估计的模型参数精度的信息。我们的算法使用伪原子模型来表示低分辨率三维结构,各向同性高斯分量作为可移动伪原子。这导致表示三维结构所需的参数数量大大减少,并且简化了计算二维投影的方式。它还有助于算法的速度。我们在贝叶斯框架中结合了未知的三维结构和图像方向的估计。这样可以确保设置的参数很少,并指定如何以系统的方式将有关结构的不同类型的先验信息与给定数据结合在一起。为了估计模型参数,我们使用马尔可夫链蒙特卡洛采样。这样做的好处是,我们不仅获得模型参数的点估计,还获得了揭示估计参数精度的模型集合。我们在模拟和真实数据上都演示了该算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号