首页> 美国卫生研究院文献>Biophysical Journal >An Effective Solvent Theory Connecting the Underlying Mechanisms of Osmolytes and Denaturants for Protein Stability
【2h】

An Effective Solvent Theory Connecting the Underlying Mechanisms of Osmolytes and Denaturants for Protein Stability

机译:一种有效的溶剂理论将渗透压和变性剂的基本机理联系在一起以保证蛋白质的稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An all-atom Gō model of Trp-cage protein is simulated using discontinuous molecular dynamics in an explicit minimal solvent, using a single, contact-based interaction energy between protein and solvent particles. An effective denaturant or osmolyte solution can be constructed by making the interaction energy attractive or repulsive. A statistical mechanical equivalence is demonstrated between this effective solvent model and models in which proteins are immersed in solutions consisting of water and osmolytes or denaturants. Analysis of these studies yields the following conclusions: 1), Osmolytes impart extra stability to the protein by reducing the entropy of the unfolded state. 2), Unfolded states in the presence of osmolyte are more collapsed than in water. 3), The folding transition in osmolyte solutions tends to be less cooperative than in water, as determined by the ratio of van 't Hoff to calorimetric enthalpy changes. The decrease in cooperativity arises from an increase in native structure in the unfolded state, and thus a lower thermodynamic barrier at the transition midpoint. 4), Weak denaturants were observed to destabilize small proteins not by lowering the unfolded enthalpy, but primarily by swelling the unfolded state and raising its entropy. However, adding a strong denaturant destabilizes proteins enthalpically. 5), The folding transition in denaturant-containing solutions is more cooperative than in water. 6), Transfer to a concentrated osmolyte solution with purely hard-sphere steric repulsion significantly stabilizes the protein, due to excluded volume interactions not present in the canonical Tanford transfer model. 7), Although a solution with hard-sphere interactions adds a solvation barrier to native contacts, the folding is nevertheless less cooperative for reasons 1–3 above, because a hard-sphere solvent acts as a protecting osmolyte.
机译:Trp-笼蛋白的全原子Gō模型是在明显的最小溶剂中使用不连续的分子动力学模拟的,使用了蛋白质和溶剂颗粒之间基于接触的单个相互作用能。可以通过使相互作用能具有吸引力或排斥作用来构建有效的变性剂或渗透剂溶液。在这种有效的溶剂模型和将蛋白质浸入由水和渗透液或变性剂组成的溶液中的模型之间,证明了统计上的机械等效性。对这些研究的分析得出以下结论:1)渗透压可通过降低未折叠状态的熵为蛋白质赋予额外的稳定性。 2),在渗透液存在下的未折叠状态比在水中更易折叠。 3),渗透剂溶液中的折叠转变往往不如在水中协同作用,这是由van't Hoff与量热焓变化之比确定的。合作性的降低是由于未折叠状态的天然结构增加,因此在过渡中点的热力学势垒降低。 4),观察到弱变性剂不是通过降低展开的焓,而是主要通过使展开状态溶胀并提高其熵来使小蛋白不稳定。但是,添加强变性剂会使蛋白质不稳定。 5),在含变性剂的溶液中的折叠过渡比在水中更容易配合。 6),由于在规范的Tanford转移模型中不存在排除的体积相互作用,因此转移到具有纯硬球空间排斥力的浓缩渗透压溶液中可显着稳定蛋白质。 7),尽管具有硬球相互作用的解决方案为天然接触增加了溶剂化障碍,但由于上述原因1-3,折叠并不那么合作,因为硬球溶剂可作为渗透压保护剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号