首页> 美国卫生研究院文献>Biophysical Journal >Built-In Mechanical Stress in Viral Shells
【2h】

Built-In Mechanical Stress in Viral Shells

机译:病毒外壳中的内置机械应力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mechanical properties of biological molecular aggregates are essential to their function. A remarkable example are double-stranded DNA viruses such as the ϕ29 bacteriophage, that not only has to withstand pressures of tens of atmospheres exerted by the confined DNA, but also uses this stored elastic energy during DNA translocation into the host. Here we show that empty prolated ϕ29 bacteriophage proheads exhibit an intriguing anisotropic stiffness which behaves counterintuitively different from standard continuum elasticity predictions. By using atomic force microscopy, we find that the ϕ29 shells are approximately two-times stiffer along the short than along the long axis. This result can be attributed to the existence of a residual stress, a hypothesis that we confirm by coarse-grained simulations. This built-in stress of the virus prohead could be a strategy to provide extra mechanical strength to withstand the DNA compaction during and after packing and a variety of extracellular conditions, such as osmotic shocks or dehydration.
机译:生物分子聚集体的机械性能对其功能至关重要。一个典型的例子是双链DNA病毒,例如ϕ29噬菌体,它不仅必须承受受限DNA施加的数十个大气压的压力,而且还需要在DNA转运到宿主中时利用这种储存的弹性能。在这里,我们显示空的pro29噬菌体前额区显示出令人着迷的各向异性刚度,其行为与标准连续谱弹性预测相反,直觉上不同。通过原子力显微镜,我们发现ϕ29壳沿短轴的刚度大约是沿长轴的两倍。这个结果可以归因于残余应力的存在,我们通过粗粒度模拟证实了这一假设。病毒前额的这种内在压力可能是一种提供额外机械强度的策略,以承受包装过程中和包装后以及各种细胞外条件(如渗透压或脱水)期间和之后的DNA压缩。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号