首页> 美国卫生研究院文献>Biophysical Journal >Importance of the Sphingosine Base Double-Bond Geometry for the Structural and Thermodynamic Properties of Sphingomyelin Bilayers
【2h】

Importance of the Sphingosine Base Double-Bond Geometry for the Structural and Thermodynamic Properties of Sphingomyelin Bilayers

机译:鞘氨醇基双键几何对鞘磷脂双分子层结构和热力学性质的重要性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The precise role of the sphingosine base trans double bond for the unique properties of sphingomyelins (SMs), one of the main lipid components in raftlike structures of biological membranes, has not been fully explored. Several reports comparing the hydration, lipid packing, and hydrogen-bonding behaviors of SM and glycerophospholipid bilayers found remarkable differences overall. However, the atomic interactions linking the double-bond geometry with these thermodynamic and structural changes remained elusive. A recent report on ceramides, which differ from SMs only by their hydroxyl headgroup, has shown that replacing the trans double bond of the sphingosine base by cis weakens the hydrogen-bonding potential of these lipids and thereby alters their biological activity. Based on data from extensive (a total 0.75 μs) atomistic molecular dynamics simulations of bilayers composed of all-trans, all-cis, and a trans/cis (4:1 ratio) racemic mixture of sphingomyelin lipids, here we show that the trans configuration allows for the formation of significantly more hydrogen bonds than the cis. The extra hydrogen bonds enabled tighter packing of lipids in the all-trans and trans/cis bilayers, thus reducing the average area per lipid while increasing the chain order and the bilayer thickness. Moreover, fewer water molecules access the lipid-water interface of the all-trans bilayer than of the all-cis bilayer. These results provide the atomic basis for the importance of the natural sphingomyelin trans double-bond conformation for the formation of ordered membrane domains.
机译:鞘氨醇碱基反式双键对鞘磷脂(SMs)(生物膜筏状结构中的主要脂质成分之一)的独特特性的精确作用尚未得到充分研究。几篇比较SM和甘油磷脂双层的水合,脂质堆积和氢键行为的报告发现总体上存在显着差异。但是,将双键几何结构与这些热力学和结构变化联系起来的原子相互作用仍然难以捉摸。关于神经酰胺的最新报道表明,神经酰胺与SM的区别仅在于其羟基头基不同,表明用顺式取代鞘氨醇碱的反式双键会削弱这些脂质的氢键结合能力,从而改变其生物活性。基于来自鞘磷脂脂质的全反式,全顺式和反式/顺式(4:1比率)外消旋混合物组成的双层的广泛(总计0.75μs)原子分子动力学模拟的数据,在这里我们显示了反式构型允许形成比顺式多得多的氢键。额外的氢键使脂质能够更紧密地堆积在全反式和反式/顺式双层中,从而减少了每个脂质的平均面积,同时增加了链序和双层厚度。而且,与全顺式双层相比,进入全反式双层的脂质-水界面的水分子更少。这些结果为天然鞘磷脂反式双键构象对于形成有序膜结构域的重要性提供了原子基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号