首页> 美国卫生研究院文献>Biophysical Journal >Fluid Shear Induces Conformation Change in Human Blood Protein von Willebrand Factor in Solution
【2h】

Fluid Shear Induces Conformation Change in Human Blood Protein von Willebrand Factor in Solution

机译:流体剪切诱导溶液中人血蛋白von Willebrand因子的构象变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Many of the physiological functions of von Willebrand Factor (VWF), including its binding interaction with blood platelets, are regulated by the magnitude of applied fluid/hydrodynamic stress. We applied two complementary strategies to study the effect of fluid forces on the solution structure of VWF. First, small-angle neutron scattering was used to measure protein conformation changes in response to laminar shear rates (G) up to 3000/s. Here, purified VWF was sheared in a quartz Couette cell and protein conformation was measured in real time over length scales from 2–140 nm. Second, changes in VWF structure up to 9600/s were quantified by measuring the binding of a fluorescent probe 1,1′-bis(anilino)-4-,4′-bis(naphtalene)-8,8′-disulfonate (bis-ANS) to hydrophobic pockets exposed in the sheared protein. Small angle neutron scattering studies, coupled with quantitative modeling, showed that VWF undergoes structural changes at G < 3000/s. These changes were most prominent at length scales <10 nm (scattering vector (q) range >0.6m). A mathematical model attributes these changes to the rearrangement of domain level features within the globular section of the protein. Studies with bis-ANS demonstrated marked increase in bis-ANS binding at G > 2300/s. Together, the data suggest that local rearrangements at the domain level may precede changes at larger-length scales that accompany exposure of protein hydrophobic pockets. Changes in VWF conformation reported here likely regulate protein function in response to fluid shear.
机译:血管性血友病因子(VWF)的许多生理功能,包括其与血小板的结合相互作用,都受所施加的流体/流体动力应力的大小调节。我们应用了两种互补策略来研究流体力对VWF溶液结构的影响。首先,小角度中子散射被用来测量蛋白质构象变化,以响应高达3000 / s的层流剪切速率(G)。在这里,纯化的VWF在石英Couette池中剪切,并在2–140 nm的长度范围内实时测量蛋白质构象。其次,通过测量荧光探针1,1'-双(苯胺基)-4-,4'-双(萘)-8,8'-二磺酸盐(bis -ANS)暴露在剪切蛋白中的疏水口袋中。小角度中子散射研究以及定量建模表明,VWF在G <3000 / s时发生结构变化。这些变化在小于10 nm的长度标度上最为显着(散射矢量(q)范围> 0.6 / nm)。数学模型将这些变化归因于蛋白质球状区域内的域水平特征的重排。对bis-ANS的研究表明,在G> 2300 / s时,bis-ANS结合显着增加。总之,数据表明在结构域水平上的局部重排可能在较大长度的变化之前发生,伴随蛋白质疏水性口袋的暴露。此处报道的VWF构象变化可能响应于流体剪切而调节蛋白质功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号