首页> 外文学位 >Regulation of protein structure and function under fluid shear: Role of Von Willebrand factor in thrombosis and hemostasis.
【24h】

Regulation of protein structure and function under fluid shear: Role of Von Willebrand factor in thrombosis and hemostasis.

机译:流体剪切作用下蛋白质结构和功能的调节:Von Willebrand因子在血栓形成和止血中的作用。

获取原文
获取原文并翻译 | 示例

摘要

Cardiovascular diseases are one of the major causes of morbidity and mortality in the developed nations. Continuous efforts by numerous laboratories all around the world have been devoted to find the perfect cure for these diseases, but still perfect drug targets for diseases such as heart attack and stroke have still not been identified. As of today this field stands in its early development stages only. There are numerous questions in this field of science which still require answers and solution to this growing problem.;Related to this vast area of science, we tried to study the role of blood proteins and their interaction in the context of thrombosis and hemostasis. My Ph.D. dissertation examines the effect of fluid or hydrodynamic forces on protein structure and function. During the course of these investigations, we have developed novel spectroscopy tools to determine the role of fluid flow in regulating protein structure and self-association/aggregation properties. Many of the studies are performed with a large multimeric protein isolated from human blood called Von Willebrand Factor (VWF). The study is important since it is established that the level and activity of VWF is associated with many vascular diseases including acute coronary syndromes. VWF also plays a key role during thrombosis that is associated with myocardial infarction and stroke. Further, strategies to control the interaction of VWF with its receptor on blood platelets (integrin GpIba) are of interest in the biotech community since this is a druggable target.;Using Small Angle Neutron Scattering(SANS) for the first time we have provided the solution structure of Von Willebrand Factor and we have also shown that this multi domain protein structure is stabilized by non covalent inter domain interaction. We further applied the combined usage of SANS and fluorescence spectroscopy to elucidate for the first time that blood protein can undergo conformational changes in solution under the effect of fluid shear forces (shear rate 2300/s). Depending on the amount of shear forces applied blood proteins can undergo changes from smaller length scales to protein unfolding and hydrophobic domain exposures which may have physiological significance. Using various cell adhesion assays and the application of multi color flow cytometry we have also shown that blood protein interaction with platelets are specific in nature and platelet activation primarily follows the platelet receptor GpIb and VWF-A1 domain interaction which is further supported by VWF-platelet GpIIbIIIa interaction. We have also shown for the first time that under high fluid shear (shear rate >6000/s) conditions VWF binding to platelets follows a pathway where at first VWF self associates either on platelet surface or in solution and this large protein aggregate binding on platelet surface results in firm VWF binding to platelet receptor GpIb and augments platelet activation.;These findings support the idea that shear forces play a critical role in thrombus formation by inducing conformational changes in blood proteins. Opposed to the traditional belief of only surface mediated protein conformational changes our findings also indicate towards the development of a new hypothesis where protein conformational changes in solution are also of physiological relevance and these changes may have a substantial role in thrombosis.
机译:心血管疾病是发达国家发病率和死亡率的主要原因之一。全世界许多实验室都在不断努力寻找完美的方法来治疗这些疾病,但是仍然没有确定心脏病发作和中风等疾病的理想药物靶标。到目前为止,该领域仅处于早期发展阶段。在这个科学领域中有许多问题,仍然需要对这个日益增长的问题进行解答和解决。与这一广阔的科学领域相关,我们试图研究血蛋白在血栓形成和止血中的作用及其相互作用。我的博士学位本文研究了流体或流体动力对蛋白质结构和功能的影响。在这些研究过程中,我们开发了新颖的光谱学工具来确定流体在调节蛋白质结构和自缔合/聚集特性中的作用。许多研究是使用一种从人血中分离出的大型多聚体蛋白进行的研究,该蛋白被称为Von Willebrand Factor(VWF)。该研究很重要,因为已确定VWF的水平和活性与包括急性冠脉综合征在内的许多血管疾病有关。在与心肌梗塞和中风有关的血栓形成过程中,VWF也起着关键作用。此外,控制VWF及其在血小板上的受体(整合素GpIba)的相互作用的策略在生物技术界引起关注,因为这是可治疗的目标。;首次使用小角中子散射(SANS),我们提供了Von Willebrand Factor的溶液结构,我们还证明了这种多域蛋白结构是通过非共价域间相互作用而稳定的。我们进一步应用了SANS和荧光光谱的结合使用,首次阐明了血液蛋白在流体剪切力(剪切速率<2300 / s)的作用下可以在溶液中发生构象变化。根据所施加的剪切力的大小,血液蛋白质可能会经历从较小的长度尺度到蛋白质展开和疏水域暴露的变化,这可能具有生理意义。使用各种细胞粘附测定法和多色流式细胞仪的应用,我们还表明,血液蛋白与血小板的相互作用本质上是特异性的,并且血小板活化主要遵循血小板受体GpIb和VWF-A1域相互作用,而VWF-血小板进一步支持GpIIbIIIa相互作用。我们还首次表明,在高流体剪切(剪切速率> 6000 / s)条件下,VWF与血小板的结合遵循一条途径,即VWF首先在血小板表面或溶液中自缔合,而这种大蛋白聚集体在血小板上的结合表面导致牢固的VWF与血小板受体GpIb结合并增强血小板活化。;这些发现支持这样一种观点,即剪切力通过诱导血液蛋白的构象变化在血栓形成中起关键作用。与仅表面介导的蛋白质构象变化的传统信念相反,我们的发现还表明正在发展一种新的假设,其中溶液中的蛋白质构象变化也具有生理相关性,这些变化可能在血栓形成中起重要作用。

著录项

  • 作者

    Singh, Indrajeet.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号