首页> 美国卫生研究院文献>Biophysical Journal >Defining Coarse-Grained Representations of Large Biomolecules and Biomolecular Complexes from Elastic Network Models
【2h】

Defining Coarse-Grained Representations of Large Biomolecules and Biomolecular Complexes from Elastic Network Models

机译:从弹性网络模型定义粗粒大生物分子和生物分子复合物的表示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Coarse-grained (CG) models of large biomolecular complexes enable simulations of these systems over long timescales that are not accessible for atomistic molecular dynamics (MD) simulations. A systematic methodology, called essential dynamics coarse-graining (ED-CG), has been developed for defining coarse-grained sites in a large biomolecule. The method variationally determines the CG sites so that key dynamic domains in the protein are preserved in the CG representation. The original ED-CG method relies on a principal component analysis (PCA) of a MD trajectory. However, for many large proteins and multi-protein complexes such an analysis may not converge or even be possible. This work develops a new ED-CG scheme using an elastic network model (ENM) of the protein structure. In this procedure, the low-frequency normal modes obtained by ENM are used to define dynamic domains and to define the CG representation accordingly. The method is then applied to several proteins, such as the HIV-1 CA protein dimer, ATP-bound G-actin, and the Arp2/3 complex. Numerical results show that ED-CG with ENM (ENM-ED-CG) is much faster than ED-CG with PCA because no MD is necessary. The ENM-ED-CG models also capture functional essential dynamics of the proteins almost as well as those using full MD with PCA. Therefore, the ENM-ED-CG method may be better suited to coarse-grain a very large biomolecule or biomolecular complex that is too computationally expensive to be simulated by conventional MD, or when a high resolution atomic structure is not even available.
机译:大型生物分子复合物的粗粒度(CG)模型可以对这些系统进行长时间模拟,而原子分子动力学(MD)模拟则无法实现。已经开发出一种称为基本动力学粗粒度(ED-CG)的系统方法,用于定义大型生物分子中的粗粒度位点。该方法以变异方式确定CG位点,从而使蛋白质中的关键动态域保留在CG表示中。原始的ED-CG方法依赖于MD轨迹的主成分分析(PCA)。但是,对于许多大蛋白和多蛋白复合物,这种分析可能不会收敛甚至是不可能的。这项工作使用蛋白质结构的弹性网络模型(ENM)开发了一种新的ED-CG方案。在此过程中,由ENM获得的低频正常模式用于定义动态域并相应地定义CG表示。然后将该方法应用于几种蛋白质,例如HIV-1 CA蛋白二聚体,ATP结合的G-肌动蛋白和Arp2 / 3复合物。数值结果表明,使用ENM的ED-CG(ENM-ED-CG)比使用PCA的ED-CG快得多,因为不需要MD。 ENM-ED-CG模型还捕获了蛋白质的功能性基本动力学,几乎与使用完整MD与PCA的蛋白质一样。因此,ENM-ED-CG方法可能更适合粗粒非常大的生物分子或生物分子复合物,而这些分子在计算上过于昂贵,无法通过常规MD进行模拟,或者甚至无法获得高分辨率原子结构时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号