首页> 美国卫生研究院文献>Biophysical Journal >Microscopic Kinetics of DNA Translocation through Synthetic Nanopores
【2h】

Microscopic Kinetics of DNA Translocation through Synthetic Nanopores

机译:通过合成纳米孔的DNA移位的微观动力学。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We have previously demonstrated that a nanometer-diameter pore in a nanometer-thick metal-oxide-semiconductor-compatible membrane can be used as a molecular sensor for detecting DNA. The prospects for using this type of device for sequencing DNA are avidly being pursued. The key attribute of the sensor is the electric field-induced (voltage-driven) translocation of the DNA molecule in an electrolytic solution across the membrane through the nanopore. To complement ongoing experimental studies developing such pores and measuring signals in response to the presence of DNA, we conducted molecular dynamics simulations of DNA translocation through the nanopore. A typical simulated system included a patch of a silicon nitride membrane dividing water solution of potassium chloride into two compartments connected by the nanopore. External electrical fields induced capturing of the DNA molecules by the pore from the solution and subsequent translocation. Molecular dynamics simulations suggest that 20-basepair segments of double-stranded DNA can transit a nanopore of 2.2 × 2.6 nm2 cross section in a few microseconds at typical electrical fields. Hydrophobic interactions between DNA bases and the pore surface can slow down translocation of single-stranded DNA and might favor unzipping of double-stranded DNA inside the pore. DNA occluding the pore mouth blocks the electrolytic current through the pore; these current blockades were found to have the same magnitude as the blockade observed when DNA transits the pore. The feasibility of using molecular dynamics simulations to relate the level of the blocked ionic current to the sequence of DNA was investigated.
机译:先前我们已经证明,可以将纳米厚度的金属氧化物半导体兼容膜中的纳米直径孔用作检测DNA的分子传感器。人们一直在追求使用这种类型的设备对DNA进行测序的前景。传感器的关键属性是电场引起的DNA分子在电解液中通过纳米孔穿过膜的电场诱导(电压驱动)移位。为了补充进行中的此类孔并测量响应DNA的存在的信号的正在进行的实验研究,我们对DNA通过纳米孔的转运进行了分子动力学模拟。一个典型的模拟系统包括一块氮化硅膜片,将氯化钾水溶液分成两个通过纳米孔连接的隔室。外部电场诱导溶液中的孔捕获DNA分子并随后发生易位。分子动力学模拟表明,在典型的电场下,双链DNA的20个碱基对片段可以在几微秒内通过2.2×2.6 nm 2 截面的纳米孔。 DNA碱基与孔表面之间的疏水相互作用可减慢单链DNA的移位,并可能有利于双链DNA在孔内解压缩。堵塞孔口的DNA阻止了通过孔的电解电流。发现这些目前的封锁与DNA穿过孔时所观察到的封锁具有相同的幅度。研究了使用分子动力学模拟将受阻离子电流的水平与DNA序列相关联的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号