首页> 外文学位 >DNA translocation through an array of kinked nanopores.
【24h】

DNA translocation through an array of kinked nanopores.

机译:DNA通过一系列扭结的纳米孔易位。

获取原文
获取原文并翻译 | 示例

摘要

Synthetic solid-state nanopores are being intensively investigated as single-molecule sensors for detection and characterization of DNA, RNA, and proteins. This field has been inspired by the exquisite selectivity and flux demonstrated by natural biological channels and the dream of emulating these behaviors in more robust synthetic materials that are more readily integrated into practical devices. To date, the guided etching of polymer films, focused ion beam sculpting, and electron-beam lithography and tuning of silicon nitride membranes have emerged as three promising approaches to define synthetic solid-state pores with sub-nanometer resolution. These procedures have in common the formation of nominally cylindrical or conical pores aligned normal to the membrane surface. Here we report the formation of 'kinked' silica nanopores, using evaporation induced self-assembly, and their further tuning and chemical derivatization using atomic layer deposition. Compared to 'straight-through' proteinaceous nanopores of comparable dimensions, kinked nanopores exhibit a factor of up to 5x reduction in translocation velocity, which has been identified as one of the critical issues in DNA sequencing. Additionally we demonstrate an efficient two-step approach to create a nanopore array exhibiting nearly perfect selectivity for ssDNA over dsDNA. We show that a coarse-grained drift-diffusion theory with a sawtooth like potential can reasonably describe the velocity and translocation time of DNA through the pore. By control of pore size, length, and shape, we capture the major functional behaviors of protein pores in our solid-state nanopore system.
机译:合成固态纳米孔正作为用于检测和表征DNA,RNA和蛋白质的单分子传感器而受到广泛研究。该领域的灵感来自天然生物通道所表现出的精湛的选择性和通量,以及梦想是在更坚固的合成材料中模拟这些行为,这些合成材料更易于集成到实际设备中。迄今为止,聚合物膜的引导蚀刻,聚焦离子束雕刻,电子束光刻以及氮化硅膜的调整已成为定义亚纳米分辨率的合成固态孔的三种有前途的方法。这些步骤通常形成垂直于膜表面对准的名义上的圆柱形或圆锥形孔。在这里,我们报道了利用蒸发诱导的自组装形成“扭结”的二氧化硅纳米孔,并利用原子层沉积对其进行了进一步的调谐和化学衍生。与尺寸相当的“直通”蛋白质纳米孔相比,扭结纳米孔的转运速度降低了多达5倍,这已被​​认为是DNA测序中的关键问题之一。另外,我们展示了一种有效的两步法来创建纳米孔阵列,该阵列对ssDNA的选择性比对dsDNA的选择性近乎完美。我们表明,具有锯齿状电位的粗粒度漂移扩散理论可以合理地描述DNA通过孔的速度和转运时间。通过控制孔的大小,长度和形状,我们可以捕获固态纳米孔系统中蛋白质孔的主要功能行为。

著录项

  • 作者

    Chen, Zhu.;

  • 作者单位

    The University of New Mexico.;

  • 授予单位 The University of New Mexico.;
  • 学科 Engineering Chemical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号