首页> 美国卫生研究院文献>Biophysical Journal >Ion Permeation through the α-Hemolysin Channel: Theoretical Studies Based on Brownian Dynamics and Poisson-Nernst-Plank Electrodiffusion Theory
【2h】

Ion Permeation through the α-Hemolysin Channel: Theoretical Studies Based on Brownian Dynamics and Poisson-Nernst-Plank Electrodiffusion Theory

机译:通过α-溶血素通道的离子渗透:基于布朗动力学和泊松-能斯特-普朗克电扩散理论的理论研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Identification of the molecular interaction governing ion conduction through biological pores is one of the most important goals of modern electrophysiology. Grand canonical Monte Carlo Brownian dynamics (GCMC/BD) and three-dimensional Poisson-Nernst-Plank (3d-PNP) electrodiffusion algorithms offer powerful and general approaches to study of ion permeation through wide molecular pores. A detailed analysis of ion flows through the staphylococcal α-hemolysin channel based on series of simulations at different concentrations and transmembrane potentials is presented. The position-dependent diffusion coefficient is approximated on the basis of a hydrodynamic model. The channel conductance calculated by GCMC/BD is ∼10% higher than (electrophysiologically measured) experimental values, whereas results from 3d-PNP are always 30–50% larger. Both methods are able to capture all important electrostatic interactions in equilibrium conditions. The asymmetric conductance upon the polarity of the transmembrane potential observed experimentally is reproduced by GCMC/BD and 3d-PNP. The separation of geometrical and energetic influence of the channel on ion conduction reveals that such asymmetries arise from the permanent charge distribution inside the pore. The major determinant of the asymmetry is unbalanced charge in the triad of polar residues D127, D128, and K131. The GCMC/BD or 3d-PNP calculations reproduce also experimental reversal potentials and permeability rations in asymmetric ionic solutions. The weak anionic selectivity of the channel results from the presence of the salt bridge between E111 and K147 in the constriction zone. The calculations also reproduce the experimentally derived dependence of the reversible potential to the direction of the salt gradient. The origin of such effect arises from the asymmetrical distribution of energetic barriers along the channel axis, which modulates the preferential ion passage in different directions.
机译:识别控制离子通过生物孔传导的分子相互作用是现代电生理的最重要目标之一。大经典的蒙特卡洛·布朗动力学(GCMC / BD)和三维Poisson-Nernst-Plank(3d-PNP)电扩散算法为研究通过宽分子孔的离子渗透提供了强大而通用的方法。基于一系列不同浓度和跨膜电势的模拟,对通过葡萄球菌α-溶血素通道的离子流进行了详细分析。位置相关的扩散系数是根据流体力学模型估算的。 GCMC / BD计算得出的通道电导比(电生理测量)实验值高约10%,而3d-PNP的结果总是大30%至50%。两种方法都能够捕获平衡条件下所有重要的静电相互作用。 GCMC / BD和3d-PNP再现了实验观察到的跨膜电位极性的不对称电导。通道对离子传导的几何和能量影响的分离表明,这种不对称性是由孔内的永久电荷分布引起的。不对称性的主要决定因素是极性残基D127,D128和K131三元组中的不平衡电荷。 GCMC / BD或3d-PNP计算还可以再现非对称离子溶液中的实验逆转电势和渗透率。通道的较弱的阴离子选择性是由于缩窄区内E111和K147之间存在盐桥造成的。该计算还再现了可逆电势对盐梯度方向的实验得出的依赖性。这种效应的起因是由于高能垒沿着通道轴的不对称分布,它在不同方向上调节了优先离子的通过。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号