首页> 美国卫生研究院文献>Biophysical Journal >Molecular dynamics simulation of the RNA complex of a double-stranded RNA-binding domain reveals dynamic features of the intermolecular interface and its hydration.
【2h】

Molecular dynamics simulation of the RNA complex of a double-stranded RNA-binding domain reveals dynamic features of the intermolecular interface and its hydration.

机译:双链RNA结合域的RNA复合物的分子动力学模拟揭示了分子间界面及其水合的动态特征。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The interaction between double-stranded RNA (dsRNA) and the third double-stranded domain (dsRBD) from Drosophila Staufen protein represents a paradigm to understand how the dsRBD protein family, one of the most common RNA-binding protein units, binds dsRNA. The nuclear magnetic resonance (NMR) structure of this complex and the x-ray structure of another family member revealed the stereochemical basis for recognition, but also raised new questions. Although the crystallographic studies revealed a highly ordered interface containing numerous water-mediated contacts, NMR suggested extensive residual motion at the interface. To address how interfacial motion contributes to molecular recognition in the dsRBD-dsRNA system, we conducted a 2-ns molecular dynamics simulation of the complex derived from Staufen protein and of the separate protein and RNA components. The results support the observation that a high degree of conformational flexibility is retained upon complex formation and that this involves interfacial residues that are critical for dsRBD-dsRNA binding. The structural origin of this residual flexibility is revealed by the analysis of the trajectory of motion. Individual basic side chains switch continuously from one RNA polar group to another with a residence time seldom exceeding 100 ps, while retaining favorable interaction with RNA throughout much of the simulation. Short-lived water molecules mediate some of these interactions for a large fraction of the trajectory studied here. This result indicates that water molecules are not statically associated with the interface, but continuously exchange with the bulk solvent on a 1-10-ps time scale. This work provides new insight into dsRBD-dsRNA recognition and builds upon a growing body of evidence, suggesting that short-lived dynamic interactions play important roles in protein-nucleic acid interactions.
机译:果蝇Staufen蛋白的双链RNA(dsRNA)和第三个双链结构域(dsRBD)之间的相互作用代表了一种理解dsRBD蛋白家族(最常见的RNA结合蛋白单元之一)如何结合dsRNA的范例。该复合物的核磁共振(NMR)结构和另一个家庭成员的X射线结构揭示了识别的立体化学基础,但同时也提出了新的问题。尽管晶体学研究表明界面高度有序,其中包含许多水介导的接触,但NMR显示界面上存在大量残余运动。为了解决界面运动如何对dsRBD-dsRNA系统中的分子识别做出贡献,我们对源自Staufen蛋白的复合物以及分离的蛋白质和RNA成分进行了2 ns的分子动力学模拟。结果支持了这样的观察,即在复合物形成时保留了高度的构象柔性,并且这涉及对于dsRBD-dsRNA结合至关重要的界面残基。通过运动轨迹的分析揭示了这种残余柔韧性的结构起源。各个基本侧链从一个RNA极性基团连续切换到另一个,停留时间很少超过100 ps,同时在整个模拟过程中都保持与RNA的良好相互作用。寿命短的水分子在本文研究的大部分轨迹中介导了其中的一些相互作用。该结果表明水分子与界面不是静态缔合的,而是在1-10-ps的时间尺度上与大量溶剂连续交换。这项工作提供了对dsRBD-dsRNA识别的新见解,并以越来越多的证据为基础,表明短暂的动态相互作用在蛋白质-核酸相互作用中起重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号