首页> 美国卫生研究院文献>Biophysical Journal >Application of the stretched exponential function to fluorescence lifetime imaging.
【2h】

Application of the stretched exponential function to fluorescence lifetime imaging.

机译:扩展指数函数在荧光寿命成像中的应用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Conventional analyses of fluorescence lifetime measurements resolve the fluorescence decay profile in terms of discrete exponential components with distinct lifetimes. In complex, heterogeneous biological samples such as tissue, multi-exponential decay functions can appear to provide a better fit to fluorescence decay data than the assumption of a mono-exponential decay, but the assumption of multiple discrete components is essentially arbitrary and is often erroneous. Moreover, interactions, both between fluorophores and with their environment, can result in complex fluorescence decay profiles that represent a continuous distribution of lifetimes. Such continuous distributions have been reported for tryptophan, which is one of the main fluorophores in tissue. This situation is better represented by the stretched-exponential function (StrEF). In this work, we have applied, for the first time to our knowledge, the StrEF to time-domain whole-field fluorescence lifetime imaging (FLIM), yielding both excellent tissue contrast and goodness of fit using data from rat tissue. We note that for many biological samples for which there is no a priori knowledge of multiple discrete exponential fluorescence decay profiles, the StrEF is likely to provide a truer representation of the underlying fluorescence dynamics. Furthermore, fitting to a StrEF significantly decreases the required processing time, compared with a multi-exponential component fit and typically provides improved contrast and signaloise in the resulting FLIM images. In addition, the stretched-exponential decay model can provide a direct measure of the heterogeneity of the sample, and the resulting heterogeneity map can reveal subtle tissue differences that other models fail to show.
机译:荧光寿命测量的常规分析根据具有不同寿命的离散指数成分解析了荧光衰减曲线。在复杂的异质生物样本(例如组织)中,多指数衰减函数似乎比单指数衰减的假设更适合荧光衰减数据,但多个离散分量的假设本质上是任意的,而且常常是错误的。此外,荧光团之间及其与环境之间的相互作用都可能导致复杂的荧光衰减曲线,从而表示寿命的连续分布。已经报道了色氨酸的这种连续分布,色氨酸是组织中的主要荧光团之一。这种情况可以用拉伸指数函数(StrEF)更好地表示。在这项工作中,我们首次将StrEF应用于时域全场荧光寿命成像(FLIM),使用来自大鼠组织的数据产生了出色的组织对比度和拟合度。我们注意到,对于许多没有多个离散的指数荧光衰减曲线的先验知识的生物样品,StrEF可能会提供更真实的潜在荧光动力学表示。此外,与多指数组件拟合相比,对StrEF进行拟合显着减少了所需的处理时间,并且通常在所得的FLIM图像中提供了改进的对比度和信号/噪声。此外,拉伸指数衰减模型可以提供样品异质性的直接度量,并且所得异质性图可以揭示其他模型无法显示的细微组织差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号